• Title/Summary/Keyword: Extreme Rainfall

Search Result 356, Processing Time 0.03 seconds

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

Analysis on Spatio-Temporal Pattern and Regionalization of Extreme Rainfall Data (극치강수량의 시공간적 특성 분석 및 지역화에 관한 연구)

  • Lee, Jeong-Ju;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.13-20
    • /
    • 2011
  • The spatio-temporal pattern in precipitation is a significant element in defining characteristics of precipitation. In this study, a new scheme on regionalization utilizing temporal information was introduced on the basis of existing approaches that is mainly based on simple moments of data and geographical information. Given the identified spatio-temporal pattern, this study was extended to characterize regional pattern of annual maximum rainfall over Korea. We have used circular statistics to characterize the temporal distribution on the precipitation, and the circular statistics allow us to effectively assess changes in timing of the extreme rainfall in detail. In this study, a modified K-means method was incorporated with derived temporal characteristics of extreme rainfall in order to better characterize hydrologic pattern for regional frequency analysis. The extreme rainfall was reasonably separated into five categories that considered most attributes in both quantitative and temporal changes in extremes. The results showed that the proposed approach is a promising approach for regionalization in term of physical understanding of extreme rainfall.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events (극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가)

  • Kim, Dong-Kyun;Kwon, Hyun-Han;Hwang, Seok Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.773-784
    • /
    • 2014
  • This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.

Mega Flood Simulation Assuming Successive Extreme Rainfall Events (연속적인 극한호우사상의 발생을 가정한 거대홍수모의)

  • Choi, Changhyun;Han, Daegun;Kim, Jungwook;Jung, Jaewon;Kim, Duckhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • In recent, the series of extreme storm events were occurred by those continuous typhoons and the severe flood damages due to the loss of life and the destruction of property were involved. In this study, we call Mega flood for the Extreme flood occurred by these successive storm events and so we can have a hypothetical Mega flood by assuming that a extreme event can be successively occurred with a certain time interval. Inter Event Time Definition (IETD) method was used to determine the time interval between continuous events in order to simulate Mega flood. Therefore, the continuous extreme rainfall events are determined with IETD then Mega flood is simulated by the consecutive events : (1) consecutive occurrence of two historical extreme events, (2) consecutive occurrence of two design events obtained by the frequency analysis based on the historical data. We have shown that Mega floods by continuous extreme rainfall events were increased by 6-17% when we compared to typical flood by a single event. We can expect that flood damage caused by Mega flood leads to much greater than damage driven by a single rainfall event. The second increase in the flood caused by heavy rain is not much compared to the first flood caused by heavy rain. But Continuous heavy rain brings the two times of flood damage. Therefore, flood damage caused by the virtual Mega flood of is judged to be very large. Here we used the hypothetical rainfall events which can occur Mega floods and this could be used for preparing for unexpected flood disaster by simulating Mega floods defined in this study.

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

Frequency Analysis of Extreme Rainfall by L-Moments (L-모멘트법에 의한 극치강우의 빈도분석)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk;Kim, Byung-Jun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF

Frequency Analysis of Extreme Rainfall Using 3 Parameter Probability Distributions (3변수 확률분포형에 의한 극치강우의 빈도분석)

  • Kim, Byeong-Jun;Maeng, Sung-Jin;Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.31-42
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

Spatial Interpolation of Rainfall by Areal Reduction Factor (ARF) Analysis for Hancheon Watershed

  • Kar, Kanak Kanti;Yang, Sung Kee;Lee, Junho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.427-427
    • /
    • 2015
  • The storm water management and drainage relation are the key variable that plays a vital role on hydrological design and risk analysis. These require knowledge about spatial variability over a specified area. Generally, design rainfall values are expressed from the fixed point rainfall, which is depth at a specific location. Concurrently, determine the areal rainfall amount is also very important. Therefore, a spatial rainfall interpolation (point rainfall converting to areal rainfall) can be solved by areal reduction factor (ARF) estimation. In mainland of South Korea, for dam design and its operation, public safety, other surface water projects concerned about ARF for extreme hydrological events. In spite of the long term average rainfall (2,061 mm) and increasing extreme rainfall events, ARF estimation is also essential for Jeju Island's water control structures. To meet up this purpose, five fixed rainfall stations of automatic weather stations (AWS) near the "Hancheon Stream Watershed" area has been considered and more than 50 years of high quality rainfall data have been analyzed for estimating design rainfall. The relationship approach for the 24 hour design storm is assessed based on ARF. Furthermore, this presentation will provide an outline of ARF standards that can be used to assist the decision makers and water resources engineers for other streams of Jeju Island.

  • PDF

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.