• 제목/요약/키워드: Extreme Learning Machine

검색결과 147건 처리시간 0.033초

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

모바일 터치스트로크 데이터를 이용한 2-class Maxtreme Learning Machine(MLM) (2-class Maxtreme Learning Machine(MLM) for Mobile Touchstroke using Sequential Fusion)

  • 최석민;테오벵진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.362-364
    • /
    • 2018
  • 핸드폰 사용자가 늘어나면서 이와 관련하여 개인 정보 보안에 대한 중요성이 대두되고 있다. 이에 따라 제안된 알고리즘은 Extreme learning machine 으로부터 착안하여 변형하여 고안한 Maxtreme Learning Machine(MLM) 으로, 사용자들의 터치 스트로크 특성 벡터를 제안 알고리즘으로 학습하여 사용자들을 검증한다. 또한 특성 벡터의 순차적 융합 기법을 이용하여 더 많은 정보를 바탕으로 사용자를 높은 정확도로 검증 할 수 있다.

머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로 (Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling)

  • 김창식;김남규;곽기영
    • 디지털산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링 (Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine)

  • 이보훈;조재훈;김용태
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.269-275
    • /
    • 2013
  • 본 논문에서는 Extreme Learning Machine(ELM)을 이용한 자기부상시스템 모델링 기법을 제안한다. 자기부상시스템의 모델링을 위하여 일반적으로 테일러 급수를 이용한 선형화 모델이 사용되어져 왔으나, 이런 수학적 기법의 경우 자기부상시스템의 비선형 반영에 한계가 있다는 단점을 가지고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 학습시간이 빠른 특성을 가진 ELM을 이용한 자기부상시스템의 모델링 기법을 제안한다. 제안된 기법은 입력 가중치들과 은닉 바이어스들의 초기값을 무작위로 선택하고 출력 가중치들은 Moore-Penrose의 일반화된 역행렬 방법을 통하여 구해진다. 실험을 통하여 제안된 알고리즘이 자기부상시스템의 모델링에서 수학적 기법에 비해 우수한 성능을 보임을 알 수 있었다.

온라인 시계열 자료를 위한 익스트림 러닝머신 적용의 최근 동향 (Recent Trends in the Application of Extreme Learning Machines for Online Time Series Data)

  • 윤여창
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.15-25
    • /
    • 2023
  • 익스트림 러닝머신은 다양한 방식의 예측 분야에서 주요 분석 방법을 제공하고 있다. 시계열 자료의 복잡한 패턴을 학습하고 잡음이 포함되어 있는 데이터이거나 비선형인 경우에도 최적의 학습을 통하여 정확한 예측을 할 수 있다. 이 연구에서는 온라인 시계열 자료를 분석하는 도구로서 주로 연구되고 있는 기계학습 모형들의 최근 동향들을 기존 알고리즘을 이용한 응용 특성들과 함께 제시한다. 지속적이고 폭발적으로 발생하는 대규모 온라인 데이터를 효율적으로 학습시키기 위해서는 다양하게 진화 가능한 속성에서도 잘 수행될 수 있는 학습 기술이 필요하다. 따라서 이 연구를 통하여 시계열 예측 분야에서 빅데이터가 적용되는 최신 기계 학습 모형에 대한 포괄적인 개요를 살펴보고, 빅데이터에 대한 기계 학습의 주요 과제 중 하나인 온라인 데이터를 학습하는 최신 모형들의 일반적인 특성과 온라인 시계열 자료를 얼마나 효율적으로 학습하고 예측에 활용할 수 있는지에 대하여 논의하고 그 대안을 제시한다.

Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine

  • Yi, Hye-Suk;Lee, Bomi;Park, Sangyoung;Kwak, Keun-Chang;An, Kwang-Guk
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.

An Automatic Diagnosis System for Hepatitis Diseases Based on Genetic Wavelet Kernel Extreme Learning Machine

  • Avci, Derya
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.993-1002
    • /
    • 2016
  • Hepatitis is a major public health problem all around the world. This paper proposes an automatic disease diagnosis system for hepatitis based on Genetic Algorithm (GA) Wavelet Kernel (WK) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by ELM learning method. The hepatitis disease datasets are obtained from UCI machine learning database. In Wavelet Kernel Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. Therefore, values of these parameters and numbers of hidden neurons should be tuned carefully based on the solved problem. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using Genetic Algorithm (GA). The performance of proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specivity analysis and ROC curves. The results of the proposed GA-WK-ELM method are compared with the results of the previous hepatitis disease studies using same database as well as different database. When previous studies are investigated, it is clearly seen that the high classification accuracies have been obtained in case of reducing the feature vector to low dimension. However, proposed GA-WK-ELM method gives satisfactory results without reducing the feature vector. The calculated highest classification accuracy of proposed GA-WK-ELM method is found as 96.642 %.

Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements

  • Duraipandy, P.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1527-1534
    • /
    • 2016
  • Online voltage stability monitoring using real-time measurements is one of the most important tasks in a smart grid system to maintain the grid stability. Loading margin is a good indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine (ELM) approach for estimation of voltage stability level under credible contingencies using real-time measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First (DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a large scale power system problem, Mutual information (MI)-based feature selection is proposed to achieve the dimensionality reduction. MI-based feature selection reduces the number of network input features which reduces the network training time and improves the generalization capability. Voltage magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus test system is considered for demonstrating the effectiveness of the proposed methodology for estimating the voltage stability level under various loading conditions considering single line contingencies. Simulation results validate the suitability of the technique for fast and accurate online voltage stability assessment using PMU data.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

An Improved Sample Balanced Genetic Algorithm and Extreme Learning Machine for Accurate Alzheimer Disease Diagnosis

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • 제10권4호
    • /
    • pp.118-127
    • /
    • 2016
  • An improved sample balanced genetic algorithm and Extreme Learning Machine (iSBGA-ELM) was designed for accurate diagnosis of Alzheimer disease (AD) and identification of biomarkers associated with AD in this paper. The proposed AD diagnosis approach uses a set of magnetic resonance imaging scans in Open Access Series of Imaging Studies (OASIS) public database to build an efficient AD classifier. The approach contains two steps: "voxels selection" based on an iSBGA and "AD classification" based on the ELM. In the first step, the proposed iSBGA searches for a robust subset of voxels with promising properties for further AD diagnosis. The robust subset of voxels chosen by iSBGA is then used to build an AD classifier based on the ELM. A robust subset of voxels keeps a high generalization performance of AD classification in various scenarios and highlights the importance of the chosen voxels for AD research. The AD classifier with maximum classification accuracy is created using an optimal subset of robust voxels. It represents the final AD diagnosis approach. Experiments with the proposed iSBGA-ELM using OASIS data set showed an average testing accuracy of 87%. Experiments clearly indicated the proposed iSBGA-ELM was efficient for AD diagnosis. It showed improvements over existing techniques.