• Title/Summary/Keyword: Extreme Events

Search Result 441, Processing Time 0.028 seconds

Understanding Climate Change over East Asia under Stabilized 1.5 and 2.0℃ Global Warming Scenarios (1.5/2.0℃ 지구온난화 시나리오 기반의 동아시아 기후변화 분석)

  • Shim, Sungbo;Kwon, Sang-Hoon;Lim, Yoon-Jin;Yum, Seong Soo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.391-401
    • /
    • 2019
  • This study first investigates the changes of the mean and extreme temperatures and precipitation in East Asia (EA) under stabilized 1.5℃ and 2℃ warming conditions above preindustrial levels provided by HAPPI project. Here, five model with 925 members for 10-year historical period (2006~2015) and 1.5/2.0℃ future warming scenarios (2091~2100) have been used and monthly based data have been analyzed. The results show that the spatial distribution fields over EA and domain averaged variables in HAPPI 1.5/2.0℃ hindcast simulations are comparable to observations. It is found that the magnitude of mean temperature warming in EA and Korea is similar to the global mean, but for extreme temperatures local higher warming trend for minimum temperature is significant. In terms of precipitation, most subregion in EA will see more increased precipitation under 1.5/2.0℃ warming compared to the global mean. These attribute for probability density function of analyzed variables to get wider with increasing mean values in 1.5/2.0℃ warming conditions. As the result of vulnerability of 0.5℃ additional warming from 1.5 to 2.0℃, 0.5℃ additional warming contributes to the increases in extreme events and especially the impact over South Korea is slightly larger than EA. Therefore, limiting global warming by 0.5℃ can help avoid the increases in extreme temperature and precipitation events in terms of intensity and frequency.

A Study on Variability of Extreme Precipitation by Basin in South Korea (한국의 유역별 호우변화에 관한 연구)

  • Lee, Seung-Ho;Kim, Eun-Kyung;Heo, In-Hye
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.5
    • /
    • pp.505-520
    • /
    • 2011
  • This study is aimed to examine the change on extreme precipitation events in South Korea. The country is divided into six basins, and seven extreme precipitation indices-related to heavy rainfall are analyzed at sixty weather stations. The increasing trend in amount of heavy rainfall is more stable than that in days of heavy rainfall. The increasing trend is the most stable when days of rainfall are more than 50 mm, or rainfall is over the 95th percentile. The precipitation indices-related to heavy rainfall was mostly increasing during analysis period. Especially, basins of the Han river, the upper Nakdong river, and the Eastern coast show significantly increasing trends compared to the other basins. However, the increasing trends of the Geum river and the Seomjin river are not statistically significant. Heavy rainfall events had stably increased in the Han and the Nakdong rivers since the mid-1970s. However, the number of stably increasing regions has decreased since the mid-2000s. It means that the frequency and intensity of the recent heavy rainfall become more irregular.

  • PDF

Recent Changes in the Frequency of Occurrence of Extreme Weather Events in South Korea (최근 우리나라의 이상기상 발생횟수의 변화)

  • Shim, Kyo Moon;Kim, Yong Seok;Jung, Myung Pyo;Kim, Ji Won;Park, Mi Sun;Hong, Su Hak;Kang, Kee-Kyung
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.461-470
    • /
    • 2018
  • The frequency of extreme weather events was analyzed using meteorological data (air temperature, precipitation, and duration of sunshine) collected from 61 stations over a 36-year span (1981-2016). The 10-day meteorological data were used as a basic unit for this analysis. On average, the frequency of occurrence of abnormal weather was 9.88 per year and has increased significantly during this 36-year period. According to the type of abnormal weather, the frequencies of occurrence of abnormally high air temperature and short duration of sunshine have increased by 0.50 and 0.41 per 10 years, respectively; however, that for abnormally low air temperature has decreased by 0.31 per 10 years and the trend was statistically significant. The highest frequency of abnormal weather appeared in 2007, with a frequency of 14.31. Abnormal weather was the most frequent at Yeongdeok station with an average frequency of 11.78 per year over this 36-year span.

Improved first-order method for estimating extreme wind pressure considering directionality for non-typhoon climates

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.473-482
    • /
    • 2020
  • The first-order method for estimating the extreme wind pressure on building envelopes with consideration of the directionality of wind speed and wind pressure is improved to enhance its computational efficiency. In this improved method, the result is obtained directly from the empirical distribution of a random selection of annual maximum wind pressure samples generated by a Monte Carlo method, rather than from the previously utilized extreme wind pressure probability distribution. A discussion of the relationship between the first- and full-order methods indicates that when extreme wind pressures in a non-typhoon climate with a high return period are estimated with consideration of directionality, using the relatively simple first-order method instead of the computationally intensive full-order method is reasonable. The validation of this reasonableness is equivalent to validating two assumptions to improve its computational efficiency: 1) The result obtained by the full-order method is conservative when the extreme wind pressure events among different sectors are independent. 2) The result obtained by the first-order method for a high return period is not significantly affected when the extreme wind speeds among the different sectors are assumed to be independent. These two assumptions are validated by examples in different regions and theoretical derivation.

Analysis of Extreme Sea Surface Temperature along the Western Coastal area of Chungnam: Current Status and Future Projections

  • Byoung-Jun Lim;You-Soon Chang
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60° grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9℃ increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2℃ in summer, 2.4℃ in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.

Impact Assessment of Climate Change on Extreme Rainfall and I-D-F Analysis (기후변화가 극한강우와 I-D-F 분석에 미치는 영향 평가)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kyung, Min-Soo;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.379-394
    • /
    • 2008
  • Recently, extreme precipitation events beyond design capacity of hydraulic system have been occurred and this is the causes of failure of hydraulic structure for flood prevention and of severe flood damage. Therefore it is very important to understand temporal and spatial characteristics of extreme precipitation events as well as expected changes in extreme precipitation events and distributional characteristics during design period under future climate change. In this paper, climate change scenarios were used to assess the impacts of future climate change on extreme precipitation. Furthermore, analysis of future extreme precipitation characteristics and I-D-F analysis were carried out. This study used SRES B2 greenhouse gas scenario and YONU CGCM to simulate climatic conditions from 2031 to 2050 and statistical downscaling method was applied to establish weather data from each of observation sites operated by the Korean Meteorological Administration. Then quantile mapping of bias correction methods was carried out by comparing the simulated data with observations for bias correction. In addition Modified Bartlett Lewis Rectangular Pulse(MBLRP) model (Onof and Wheater, 1993; Onof 2000) and adjust method were applied to transform daily precipitation time series data into hourly time series data. Finally, rainfall intensity, duration, and frequency were calculated to draw I-D-F curve. Although there are 66 observation sites in Korea, we consider here the results from only Seoul, Daegu, Jeonju, and Gwangju sites in this paper. From the results we found that the rainfall intensity will be increased and the bigger intensity will be occurred for longer rainfall duration when we compare the climate conditions of 2030s with present conditions.

Solar Activity as a Driver of Space Weather II. Extreme Activity: October-November 2003

  • Jo, Gyeong-Seok;Mun, Yong-Jae;Kim, Rok-Sun;Hwang, Yu-Ra;Kim, Hae-Dong;Jeong, Jong-Gyun;Im, Mu-Taek;Park, Yeong-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.38-38
    • /
    • 2004
  • In this talk, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. We applied the CME propagation models to these events in order to predict the arrivals of heliospheric disturbances. (omitted)

  • PDF

Applications of Harmony Search in parameter estimation of probability distribution models for non-homogeneous hydro-meteorological extreme events

  • Lee, Tae-Sam;Yoon, Suk-Min;Gang, Myung-Kook;Shin, Ju-Young;Jung, Chang-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.258-258
    • /
    • 2012
  • In frequency analyses of hydrological data, it is necessary for the interested variables to be homogenous and independent. However, recent evidences have shown that the occurrence of extreme hydro-meteorological events is influenced by large-scale climate variability, and the assumption of homogeneity does not generally hold anymore. Therefore, in order to associate the non-homogenous characteristics of hydro-meteorological variables, we propose the parameter estimation method of probability models using meta-heuristic algorithms, specifically harmony search. All the weather stations in South Korea were employed to demonstrate the performance of the proposed approaches. The results showed that the proposed parameter estimation method using harmony search is a comparativealternative for the probability distribution of the non-homogenous hydro-meteorological variables data.

  • PDF

Exploring X-event in the Field of Near-Future Population

  • Sang-Keun Cho;Jun-Woo Kim;Eui-Chul Shin;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.186-190
    • /
    • 2023
  • There are unimaginable possibilities ahead of us. As a result, it is difficult to predict the future, but the prediction itself is not meaningless. This is because it can have the flexibility to cope with contingencies by predicting various possibilities. This study was conducted to explore extreme events (X-event) in the Korean population sector. To this end, in-depth interviews were conducted with experts from the Korea Army Research Center for Future & Innovation and the Army College, and based on this, significant research results were derived that population problems such as population decline and aging can affect various fields such as economy. With this study, we hope that discussions on extreme events (X-event) that can occur in our society will be further activated.

Hydrological Properties of the Water Spider Habitat in Yeoncheon (연천 은대리 물거미 서식지의 수문적 특성)

  • Yang, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.107-119
    • /
    • 2019
  • In recent years, the drying of the water spider habitat has been progressing rapidly. This is the primary cause of extreme climatic events in 2014/2015 with overall reduction in annual precipitation, but impermeable clayey layer formed in the superficial formation also plays an important role. The clayey layer is a critical factor in the formation of wetlands on a well-drained lava plateau, but paradoxically, it restricts the connection with ground water, increasing the instability of the water balance and making it precipitation-dependent structure. In addition, construction of roads/drainways has also caused drying of wetlands by blocking or rapidly spilling surface water/sheet flow. Therefore, to keep the wetlands sustainable, it should increase the flow into the wetlands by removing the road/drainways and floodgates installed to reduce the outflow.