• 제목/요약/키워드: Extreme Events

검색결과 433건 처리시간 0.029초

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

Effect of Earthquake Disruptions of Freight Transportation in A Megacity: Case Study for The Los Angeles Area

  • Abadi, Afshin;Ioannou, Petros;Moore, James E. II;Bardet, Jean-Pierre;Park, Jiyoung;Cho, Sungbin
    • Asian Journal of Innovation and Policy
    • /
    • 제11권1호
    • /
    • pp.110-147
    • /
    • 2022
  • Many megacities are exposed to natural hazards such as earthquakes, and when located in coastal regions, are also vulnerable to hurricanes and tsunamis. The physical infrastructures of transportation systems in megacities have become so complicated that very few organizations can understand their response to extreme events such as earthquakes and can effectively mitigate subsequent economic downfalls. The technological advances made in recent years to support these complex systems have not grown as fast as the rapid demand on these systems burdened by population shift toward megacities. The objective of this paper is to examine the risks imposed on and recoveries of transportation systems in megacities as the result of extreme events such as an earthquake. First, the physical damage to transportation infrastructure, loss of the transportation system performance, and the corresponding economic loss from disruptions to passenger and freight traffic is evaluated. Then, traffic flows are re-routed to reduce vehicles' delay due to earthquakes using a microscopic traffic flow simulator with an optimization model and macroscopic terminal simulator. Finally, the economic impact of the earthquake is estimated nationwide. Southern California is regarded as the region of study. The results demonstrate the effectiveness of the integrated model and provide what and how to prepare innovative resilience policies of urban infrastructure for a natural disaster occurrence.

Multivariate assessment of the occurrence of compound Hazards at the pan-Asian region

  • Davy Jean Abella;Kuk-Hyun Ahn
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.166-166
    • /
    • 2023
  • Compound hazards (CHs) are two or more extreme climate events combined which occur simultaneously in the same region at the same time. Compared to individual hazards, the combination of hazards that cause CHs can result in greater economic losses and deaths. While several extreme climate events have been recorded across Asia for the past decades, many studies have only focused on a single hazard. In this study, we assess the spatiotemporal pattern of dry compound hazards which includes drought, heatwave, fire and wind across Asia for the last 42 years (1980-2021) using the historical data from ERA5 Reanalysis dataset. We utilize a daily spatial data of each climate event to assess the occurrence of such compound hazards on a daily basis. Heatwave, fire and wind hazard occurrences are analyzed using daily percentile-based thresholds while a pre-defined threshold for SPI is applied for drought occurrence. Then, the occurrence of each type of compound hazard is taken from overlapping the map of daily occurrences of a single hazard. Lastly, a multivariate assessment are conducted to quantify the occurrence frequency, hotspots and trends of each type of compound hazard across Asia. By conducting a multivariate analysis of the occurrence of these compound hazards, we identify the relationships and interactions in dry compound hazards including droughts, heatwaves, fires, and winds, ultimately leading to better-informed decisions and strategies in the natural risk management.

  • PDF

Some models for rainfall focused on the inner correlation structure

  • Kim, Sangdan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1290-1294
    • /
    • 2004
  • In this study, new stochastic point rainfall models which can consider the correlation structure between rainfall intensity and duration are developed. In order to consider the negative and positive correlation simultaneously, the Gumbels type-II bivariate distribution is applied, and for the cluster structure of rainfall events, the Neyman-Scott cluster point process is selected. In the theoretical point of view, it is shown that the models considering the dependent structure between rainfall intensity and duration have slightly heavier tail autocorrelation functions than the corresponding independent mode]s. Results from generating long time rainfall events show that the dependent models better reproduce historical rainfall time series than the corresponding independent models in the sense of autocorrelation structures, zero rainfall probabilities and extreme rainfall events.

  • PDF

성층권 돌연승온이 동아시아 지표기온에 미치는 영향 (Impact of Sudden Stratospheric Warming on the Surface Air Temperature in East Asia)

  • 송강현;손석우;우성호
    • 대기
    • /
    • 제25권3호
    • /
    • pp.461-472
    • /
    • 2015
  • The sudden stratospheric warming (SSW), which is characterized by an abrupt increase of polar stratospheric temperature by several tens of degrees in a week, has been known to affect tropospheric weather and climate on sub-seasonal time scale in the boreal winter. Such downward coupling has been often examined in North Atlantic and Europe, but rarely examined in East Asia. In this study, by applying the two definitions of SSW to the reanalysis data, the possible impacts of the SSW events on the surface air temperature (SAT) and tropospheric circulation in East Asia are analyzed. It is found that Eurasian continent, including Siberia and the Northeast Asia, tends to experience anomalously cold SAT for up to sixty days after the SSW events. The resulting SAT anomalies largely resemble those associated with negative Artic Oscillation. However, over East Asia, SSW-related SAT change is weak and not statistically significant. Only during the extreme SSW events when the downward coupling between the stratosphere and troposphere is strong, East Asia exhibits significantly cold SAT anomalies. This relationship is presented by grouping SSW events into those followed by cold SAT anomalies over East Asia and those by warm anomalies for varying threshold values of the SSW events.

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석 (Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary)

  • 류호상;이관홍
    • 한국해양학회지:바다
    • /
    • 제16권4호
    • /
    • pp.223-237
    • /
    • 2011
  • 하구둑으로 인해 담수의 공급이 간헐적으로 발생하는 영산강 하구에서는 담수의 방류가 하구의 유동패턴, 염분농도의 변이, 영양염 공급 등 하구환경과 생태계 반응을 주도하는 요인이다. 담수의 방류는 유역의 강우조건에 영향을 받으므로 담수의 방류시기 및 규모를 파악하기 위해서는 담수방류를 유발하는 강우조건과 강우-방류간 상관관계에 대한 이해가 필요하다. 또한 담수방류가 하구에 미치는 영향을 평가하기 위해서는 방류의 규모와 더불어 빈도에 대한 고려가 필수적이다. 이 연구는 영산강 하구역의 담수방류를 예측하고 평가하는 도구로서 영산강 하구둑의 담수 방류자료를 대상으로 강우에 보다 직접적으로 반응하는 극치방류의 확률분포함수를 파악하고 극치방류를 유발하는 강우조건을 판별하여 극치방류를 유발하는 강우와 극치방류 간의 빈도-규모 관계식을 도출하는 데 목적을 두었다. 13.7년(1997.1.1-2010.8.31)간의 일방류량 자료에 대하여 일연속방류를 분석의 기본단위인 방류이벤트로 정의하되 4일 이상의 일연속방류의 경우는 방류패턴에 토대를 둔 이벤트 분리 알고리듬을 적용하여 개별 이벤트를 식별하였다. 총 529건의 방류 이벤트에 대하여 14년간의 연 최고치 중 최솟값에 해당하는 133,656,000 $m^3$을 기준으로 극치방류이벤트를 선별하고 부분시계열 빈도분석법을 적용하여 극치방류의 확률분포함수가 Weibull(k=1.4)함수를 따름을 확인하였다. 극치방류를 기준으로 대비되는 강우 l일전 3일합 강우량이며 최솟값은 50.98 mm인 것으로 나타났다. 이 기준에 따라 추출된 방류유발기능 강우군은 총 102건으로 극치방류이벤트의 수보다 많았다. 정준판별분석을 통해 3일합 강우량 이외에 관리수위대비(-1.35 m EL.) 하구호 수위가 방류유발 강우를 규정하는 중요한 요소라는 점과 방류유발가능 강우군을 선별하는 임계값을 104mm로 재조정할 경우 3일합 강우량만으로 방류유발 강우를 규정할 수 있음을 확인하였다. 극치방류 유발 강우만을 대상으로 강우-방류 관계식을 수립한 결과 3일합-강우량($\overline{r_{3day}}$), 3일합-강우량 재현주기($T_{r3}$), 방류량(Discharge, D), 방류량 재현주기($T_d$)의 관계는 $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$로 나타났다. 100년 주기 3일합 강우(357mm)에 의해 유발되는 방류량은 영산강 하구둑 방류량의 재현주기는 30.8년 정도이며 그 양은 $7.0979{\times}10^8m^3$이다. 담수방류의 재현주기 및 재현주기에 기초한 강우-방류 관계식은 영산강 하구역을 비롯하여 인위적으로 담수의 방류가 조절되는 하구역에서 담수의 영향을 평가하고 예측하는 데 기여할 수 있을 것이다.

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

통계적 상세화 기법을 통한 기후변화기반 지속시간별 연최대 대표 강우시나리오 생산기법 소개 (Introduction to the production procedure of representative annual maximum precipitation scenario for different durations based on climate change with statistical downscaling approaches)

  • 이태삼
    • 한국수자원학회논문집
    • /
    • 제51권spc1호
    • /
    • pp.1057-1066
    • /
    • 2018
  • 기후변화는 홍수의 가장 큰 원인이 되는 극치강우의 빈도와 크기에 매우 큰 영향을 미치고 있다. 특히, 우리나라에서 발생하는 대규모 재해는 강우에 의한 홍수피해가 대부분을 차지하고 있다. 이러한 홍수피해는 기후변화에 의한 극한강우의 발생 빈도가 높아짐에 따라 새로운 재해양상으로 전개되고 있다. 하지만, 미래 기후변화 시나리오 자료는 해상도의 한계로 인하여 중소규모 하천 및 도시유역에 요구되는 수준의 자료 수집이 불가능한 상태이다. 이러한 문제점을 개선하기 위하여 본 연구에서는 전지구모형에서 생산된 기후변화 시나리오에 대해서 여러 단계의 통계적 상세화 기법을 통하여 우리나라 전역에 대하여 미래 시나리오에 대한 빈도해석이 가능하도록 각 지점의 특성에 따라 시간적으로 상세화하기 위해 개발된 방법 및 과정을 소개하였다. 이를 통해, 시간상세화 자료를 토대로 미래 강우에 대한 빈도해석과 기후변화에 따른 방재성능 목표강우량을 산정하는데 활용할 수 있도록 하였다.

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF