• Title/Summary/Keyword: Extratropical low pressure

Search Result 5, Processing Time 0.019 seconds

A Selection of the Refuge Area in the West Sea for the National Fishery Supervision Vessel according to the Trajectories of the Extratropical Cyclone in Winter Season (겨울철 온대저기압의 이동경로에 따른 국가어업지도선의 서해 피항지 선정)

  • Chong, Ki-Chol;Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.555-562
    • /
    • 2007
  • The environs of Korea in winter season are influenced by the distribution of atmospheric pressure, namely, the typical east-low and west-high pattern that is formed from both the Siberian continental high pressure and the Aleutian oceanic low pressure. In this reason, the violent West or North-West monsoon, the billows with the strong wind, and the tremendous heavy snowfall are encountered very frequently in the West Sea. In this study, the trajectories of the extratropical cyclone are analysed to choose the safe refuge areas of National Fishery Supervision Vessel using the surface analysis weather chart for 11 years from 1994 to 2004. The safe refuge areas according to the trajectories of the extratropical cyclone in the West Sea are decided using data that contain the topographical properties of island, the depth of water, the state of low quality, the influence of tidal current, and the distribution of fishing-net.

Strong wind climatic zones in South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • In this paper South Africa is divided into strong wind climate zones, which indicate the main sources of annual maximum wind gusts. By the analysis of wind gust data of 94 weather stations, which had continuous climate time series of 10 years or longer, six sources, or strong-wind producing mechanisms, could be identified and zoned accordingly. The two primary causes of strong wind gusts are thunderstorm activity and extratropical low pressure systems, which are associated with the passage of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical cyclones play the most dominant role. Along the coast and adjacent interior annual extreme gusts are usually caused by extratropical cyclones. Four secondary sources of strong winds are the ridging of the quasi-stationary Atlantic and Indian Ocean high pressure systems over the subcontinent, surface troughs to the west in the interior with strong ridging from the east, convergence from the interior towards isolated low pressure systems or deep coastal low pressure systems, and deep surface troughs on the West Coast.

Analysis of the Reason for Occurrence of Large-Height Swell-like Waves in the East Coast of Korea (우리나라 동해안 너울성 고파의 발생원인 분석)

  • Oh, Sang-Ho;Jeong, Weon-Mu;Lee, Dong-Young;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.101-111
    • /
    • 2010
  • Characteristics of large-height swell-like waves that repeatedly occurred on the Korean East Coast in winter season were analyzed by using the wave observation data and the meteorological data. Based on the results of the data analysis, it was demonstrated that the swell-like waves have been generated due to the long-lasting strong northeasters in the East Sea, which were formed as a result of the low pressure trough in the vicinity of the extratropical low pressure system that advanced to East Sea from the China inland with decreasing its central pressure. Among the recently occurred events of the swell-like waves, the characteristics of the two events in October 2005 and 2006 were predominantly wind waves. Meanwhile, the one in February 2008 seems to be occurred by the initial wave growth due to wind waves followed by the secondly increase of the wave height due to longer-period swell.

Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea (2007년 5월 6-8일 황사 현상의 예측 민감도 분석)

  • Kim, Hyun Mee;Kay, Jun Kyung
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.399-414
    • /
    • 2010
  • Sand and dust storm in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. An Asian dust event occurred on 6-8 May 2007 is chosen to investigate how sensitive the Asian dust transport forecast to the initial condition uncertainties and to interpret the characteristics of sensitivity structures from the viewpoint of dynamics and predictability. To investigate the forecast sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to Asian dust transports are dry energy forecast error and lower tropospheric pressure forecast error. The results show that the sensitive regions for the dry energy forecast error and the lower tropospheric pressure forecast error are initially located in the vicinity of the trough and then propagate eastward as the surface low system moves eastward. The vertical structures of the adjoint sensitivities for the dry energy forecast error are upshear tilted structures, which are typical adjoint sensitivity structures for extratropical cyclones. Energy distribution of singular vectors also show very similar structures with the adjoint sensitivities for the dry energy forecast error. The adjoint sensitivities of the lower tropospheric pressure forecast error with respect to the relative vorticity show that the accurate forecast of the trough (or relative vorticity) location and intensity is essential to have better forecasts of the Asian dust event. Forecast error for the atmospheric circulation during the dust event is reduced 62.8% by extracting properly weighted adjoint sensitivity perturbations from the initial state. Linearity assumption holds generally well for this case. Dynamics of the Asian dust transport is closely associated with predictability of it, and the improvement in the overall forecast by the adjoint sensitivity perturbations implies that adjoint sensitivities would be beneficial in improving the forecast of Asian dust events.

An analysis of Characteristics of Heavy Rainfall Events over Yeongdong Region Associated with Tropopause Folding (대류권계면 접힘에 의한 영동지방 집중호우사례의 특성분석)

  • Lee, Hye-Young;Ko, Hye-Young;Kim, Kyung-Eak;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.354-369
    • /
    • 2010
  • The synoptic and kinematic characteristics of a heavy rainfall that occurred in Gangneung region on 22 to 24 October 2006 were investigated using weather maps, infrared images, AWS observation data and NCEP global final analyses data. The total amount of rainfall observed in the region for the period was 316.5 mm, and the instanteneous maximum wind speed was $63.7m\;s^{-1}$. According to the analysis of weather maps, before the starting of the heavy rainfall, an extratropical low pressure system was developed in the middle region of the Korean Peninsula, and an inverted trough was formed in the northern region of the peninsula. In addition, a jet stream on the upper charts of 300 hPa was located over the Yellow Sea and the southern boundary of the peninsula. A cutoff low in the cyclonic shear side of the upper jet streak, which was linked to an anomaly of isentropic potential vorticity, was developed over the northwestern part of the peninsula. And there are analyzed potential vorticity and wind, time-height cross section of potential vorticity, vertical air motion, maximums of the divergence and convergence and vertical distribution of potential temperature in Gangneung region. The analyzed results of the synoptic conditions and kinematic processes strongly suggest that the tropopause folding made a significant role of initializing the heavy rainfall.