• Title/Summary/Keyword: Extraterrestrial

Search Result 44, Processing Time 0.025 seconds

Characteristic analysis of solar radiation and atmospheric transmissivity at Chupungryeong (추풍령의 일사량과 대기투과율의 특성 분석)

  • Park, Jin Ki;Kim, Bong Seop;Park, Jong Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • The surface solar radiation is an important indicators for climate and agricultural research over the Earth system. For the climate and agricultural research, long-term meteorological data and accurate measured data are needed. The daily solar radiation from Jan. 2001 to Dec. 2010 have been employed in this study analyze atmospheric transmissivity for Chupungryeong. The corresponding daily value of atmospheric transmissivity is calculated for Chupungryeong meteorological data. In this paper, relationship analysis of daily solar radiation and atmospheric transmissivity is presented. It shows that atmospheric transmissivity over late December peaked in the 2000s, substantially decreased from the early-January, and changed little after that in summer. Reduction of solar radiation caused a reduction of more than 0.3 in atmospheric transmissivity during July to August. It was concluded that the atmospheric transmissivity could be very useful for evaluating solar radiation. Atmospheric transmissivity approach is suitable for daily-term simulation studies and useful for computing solar radiation.

A legal regime to govern the exploitation of the natural resources of the Moon and other celestial bodies

  • Tronchetti, Fabio
    • 한국항공우주법학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.185-215
    • /
    • 2008
  • The exploitation of the natural resources of the Moon and other celestial bodies represents one of the most exiting future developments in the field of space law as well as a unique occasion for the economic and social growth of mankind as a whole. The large number of benefits that are expected to be generated from the exploitation of these resources, indeed, not only will contribute to the betterment of conditions of people on Earth but also will allow mankind to face and likely solve one of the biggest problems currently affecting our planet, namely the exhaustion of the stocks of raw materials and other source of energy, such as fossil fuels. The exploitation of the natural resources of the Moon and other celestial bodies, however, has been prevented so far by the absence of dedicated space law rules allowing its orderly and peaceful development and clarifying the rights and duties of the parties involved in it. Due to the uncertainty generated by the absence of these rules, indeed, States as well as private operators have refrained from investing in the exploitation of space resources so far. The time to change this situation and to allow the exploitation of extraterrestrial resources to begin has finally come. This paper aims at fulfilling this purpose by proposing a legal regime containing specific and detailed rules to regulate the exploitation of the natural resources of the Moon and other celestial bodies.

  • PDF

ON THE HOMOGENEITY OF THE EXTINCTION LAW IN OUR GALAXY

  • Bondar, A.;Galazutdinov, G.;Patriarchi, P.;Krelowski, J.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.3
    • /
    • pp.73-80
    • /
    • 2006
  • We analyze the extinction law towards several B1V stars-members of our Galaxy, searching for possible discrepancies from the galactic average extinction curve. Our photometric data allow to build extinction curves in a very broad range: from extreme UV till infrared. Two-colour diagrams, based on the collected photometric data from the ANS UV satellite, published UBV measurements and on the infrared 2MASS data of the selected stars, are constructed. Slopes of the fitted straight lines are used to build the average extinction curve and to search for discrepant objects. The selected stars have also been observed spectroscopically from the Terskol and ESO Observatories; these spectra allow to check their Sp/L's. The spectra of only about 30% of the initially selected objects resemble closely that of HD144470, considered as the standard of B1 V type. Other spectra either show some emission features or belong clearly to another spectral types. They are not used to build the extinction curve. Two-colour diagrams, constructed for the selected B1 V stars, showing no emission stellar features, prove that the interstellar extinction law is homogeneous in the Galaxy. Both the shape of the curve and the total-to-selective extinction ratio do not differ from the galactic average and the canonical value(3.1) respectively. The circumstellar emissions usually cause some discrepancies from the average interstellar extinction law; the discrepancies observed in the extraterrestrial ultraviolet, usually follow some misclassifications.

A legal regime to govern the exploitation of the natural resources of the Moon and other celestial bodies

  • Tronchetti, Fabio
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.1
    • /
    • pp.131-168
    • /
    • 2008
  • The exploitation of the natural resources of the Moon and other celestial bodies represents one of the most exiting future developments in the field of space law as well as a unique occasion for the economic and social growth of mankind as a whole. The large number of benefits that are expected to be generated from the exploitation of these resources, indeed, not only will contribute to the betterment of conditions of people on Earth but also will allow mankind to face and likely solve one of the biggest problems currently affecting our planet, namely the exhaustion of the stocks of raw materials and other source of energy, such as fossil fuels. The exploitation of the natural resources of the Moon and other celestial bodies, however, has been prevented so far by the absence of dedicated space law rules allowing its orderly and peaceful development and clarifying the rights and duties of the parties involved in it. Due to the uncertainty generated by the absence of these rules, indeed, States as well as private operators have refrained from investing in the exploitation of space resources so far. The time to change this situation and to allow the exploitation of extraterrestrial resources to begin has finally come. This paper aims at fulfilling this purpose by proposing a legal regime containing specific and detailed rules to regulate the exploitation of the natural resources of the Moon and other celestial bodies.

  • PDF

A Study on the Analysis of Solar Radiation Characteristics on a High Elevated Area (고지대 일사량 특성분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • The purpose of this study is to procure basic data to be used for solar power plant and concentrating collector designs. Site elevation is one of the major factors which influences the incoming insolation to the earth surface. Because the nonpermanent gases such as ozone, water vapor are unmixed components of the atmosphere and their concentrations are the function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Jiri Mt. (1,400m) and in Gurye area(115m) at the near same latitude. These values were then compared to obtain their characteristics and to investigate the potential for the solar utilization for both high and low elevated areas. From the experimental results, we concluded that 1) Daily mean horizontal global radiation and normal beam radiation on Mt. Jiri are 9.5%, and 35.3% higher than Gurye area respectively for a clear day. 2) A significant difference in atmospheric clearness index is observed between Mt. Jiri and Gurye areas.

A Study on the Optimal Installation of Solar Photovoltaic System in Korea (국내 태양광발전시스템의 최적 설치에 관한 연구)

  • Jo, Dok-Ki;Kang, Yong-Heack;Lee, Euy-Joon;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.19-25
    • /
    • 2004
  • The measured solar radiation incident on tilted surfaces by all directions has been widely used as important solar radiation data in installing photovoltaic modules. To maximize the incident beam radiation, the slope, which is the angle between the plane of the surface in question and the horizontal, an4 the solar azimuth angles are needed for these solar photovoltaic systems. This is because the performance of the solar photovoltaic systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been performed in this research to obtain the an91e of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in installing optimal photovoltaic modules.

Estimating Reference Crop Evapotranspiration Using Artificial Neural Network and Temperature-based Climatic Data (인공신경망모형을 이용한 기온기반 기준증발산량 산정)

  • Lee, Sung-Hack;Kim, Maga;Choi, Jin-Yong;Bang, Jehong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • Evapotranpiration (ET) is one of the important factor in Hydrological cycle and irrigation planning. In this study, temperature-based artificial neural network (ANN) model for daily reference crop ET estimation was developed and compared with reference crop evapotranpiration ($ET_0$) from FAO-56 Penman-Monteith method (FAO-56 PM) and parameter regionalized Hargreaves method. The ANN model was trained and tested for 10 weather stations (5 inland stations and 5 costal stations) and two input climate factors, maximum temperature ($T_{max}$), minimum temperature ($T_{min}$), and extraterrestrial radiation (RA) were used for training and validation of temperature-based ANN model. Monthly reference ET by the ANN model also compared with parameter regionalized Hargreaves method for ANN model applicability evaluation. The ANN model evapotranspiration demonstrated more accordance to FAO-56 PM evapotranspiration than the $ET_0$ from parameter regionalized Hargreaves method(R-Hargreaves). The results of this study proposed that daily reference crop ET estimated by the ANN model could be used in the condition of no sufficient climate data.

DESIGN AND PRELIMINARY TEST RESULTS OF MAGNETOMETERS (MAG/AIM & SIM) FOR SOUNDING ROCKET KSR-III (KSR-III 과학 관측 로켓 자력계(MAG/AIM & SIM)의 초기 시험 모델 개발)

  • KIM HYO-MIN;JANG MIN-HWAN;SON DE-RAC;LEE DONG-HUN;KIM SUN-MI;HWANG SEUNG-HYUN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.57-64
    • /
    • 2000
  • It is realized that the extraterrestrial matter is in ionized state, plasma, so the matter of this kind behaves as not expected because of its sensitiveness to electric and magnetic fields and its ability to carry electric currents. This kind of subtle change can be observed by an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite, and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control and the Earth's magnetic field measurements for the scientific purpose. In this paper, we present the preliminary design and the test results of the two onboard magnetometers of KARl's (Korea Aerospace Research Institute) sounding rocket, KSR­III, which will be launched during the period of 2001-02. The KSR-III magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector fields with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

Seasonal Variation and Measurement Uncertainty of UV Aerosol Optical Depth Measured at Gwangju, Korea (자외선 영역의 에어로졸 광학 깊이의 계절 분포 및 불확실도의 계산)

  • Kim, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.631-637
    • /
    • 2005
  • A UV-MFRSR instrument was used to measure the global and diffuse irradiances in 7 narrowband channels in the UV range 299.4, 304.4, 310.9, 317.3. 324.5, 331.3 and 367.4 nm at Gwangju ($35^{circ}\;13'N\;126^{circ}\;50'E$), Korea. Spectral UV-AOD was retrieved using the Langley plot method for data collected from April 2002 to July 2004. Temporal variation of AOD at 367.4 nm ($AOD_{367nm}$) showed a maximum in June ($0.95\pm0.43$) and a minimum in February ($0.31\pm0.14$). Clear seasonal variation of $AOD_{367nm}$ was observed with average values of $0.68\pm0.29,\;0.82\pm0.41,\;0.48\pm0.22\;and\;0.42\pm0.21$ in spring, summer, fall and winter, respectively, Average Angstrom exponent for the entire monitoring period was $2.03\pm0.75$ in the UV-A ($324.5\∼367.4$ nm) range. Seasonal variation of the Angstrom exponent showed a maximum in spring and a minimum in summer. The lowest Angstrom exponent in summer might be due to hygroscopic growth of particles under conditions of high relative humidity. UV-AOD changes under different atmospheric conditions were also analyzed. Uncertainty in retrieving spectral UV-AOD was also estimated to range between $\pm0.218\;at\;304.4\;nm\;and\;\pm0.135\;at\;367.4\;nm$. Major causes of uncertainty were total column ozone retrieval and extraterrestrial irradiance retrieval at shorter and longer wavelengths, respectively.

Magnetic Mineral Identification in Meteorites (잔류자화비를 이용한 운석의 자성광물 판별)

  • Kim, In-Ho;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Meteorites are extraterrestrial solid rock fragments that fell from the outer space. Investigating mineral magnetic properties of the Meteorites is essential in understanding the evolution of planets and asteroids in the Solar System. In particular, magnetic characterization of magnetic mineral can provide constraints on the progress of differentiation in ancient planetary bodies. In the present study, ratio of thermoremanent magnetization (TRM) over saturation isothermal remanent magnetization (SIRM) was applied to diagnose the magnetic minerals in meteorites and igneous rocks. Distinctive classification of TRM/SIRM suggests that kamacite, tetrataenite, magnetite, and (Cr,Ti)-rich iron oxide are responsible for the magnetization of H5 Richardton, LL6 St. Severin, ALH84001, and DaG476, respectively. The TRM/SIRM ratio could be an efficient tool in identifying magnetic minerals especially when rocks or meteorites contain unstable material under heating.