• Title/Summary/Keyword: Extraction and separation

Search Result 661, Processing Time 0.025 seconds

Effect of Extraction Solvent on the Separation of Sulfur Components in Light Cycle Oil (접촉분해경유로부터 산화황화합물의 분리에 관한 추출용매의 영향)

  • Park, Su-Jin;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Chul-Ung;Jeong, Soon-Yong;Koo, Kee-Kahb
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.965-970
    • /
    • 2008
  • The separation of sulfone components using light cycle oil(LCO) after oxidation was carried out by solvent extraction method using various polar solvents such as water, n-methyl-2-pyrrolidone(NMP), dimethyl sulfoxide, ethyl acetate, acetonitrile, dimethyl formamide, and methyl alcohol. It was found that phase separation between LCO layer and solvent occurred under mixed solvent adding a proper amount of water. The mixture solvent of NMP and water was a promising extraction solvent due to the selective removal and high distribution coefficient of sulfone component in LCO. 99.5% over of sulfur contents in LCO can be removed by 4 stages equilibrium extraction.

Selective Solvent Extraction of In from Synthesis Solution of MOCVD Dust using D2EHPA (MOCVD 더스트 합성용액으로부터 D2EHPA를 이용한 In의 선택적 용매추출)

  • Im, Byoungyong;Swain, Basudev;Lee, Chan Gi;Park, Jae Layng;Park, Kyung-Soo;Shim, Jong-Gil;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.80-86
    • /
    • 2015
  • The separation of In from the synthesis solution with Ga, Fe, and Al has been studied by the solvent extraction using D2EHPA as an extractant. The effects as a function of the concentration of extractant and HCl on the extraction of In were investigated. The extraction of In and Ga increased with decreasing HCl concentration, but that of Fe and Al was independent. Separation factor between In and Ga of 115 was obtained at 1.0 M D2EHPA in the presence of 0.5 M HCl of feed solution. Consequently, this study shows that D2EHPA is suitable extractant for In extraction from the synthesis solution. Extraction efficiency and separation factor could be increased by controlling HCl and extractant concentration.

Optimization of liquid-liquid extraction conditions for paclitaxel separation from plant cell cultures (식물세포배양으로부터 Paclitaxel 분리를 위한 액-액 추출 조건의 최적화)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.212-215
    • /
    • 2009
  • In this study, the process parameters of liquid-liquid extraction were optimized to obtain a high purity and yield of paclitaxel in a pre-purification step. The optimal solvent ratio (methylene chloride/concentrated methanol extract ratio), extraction times, mixing time, and standing time for liquid-liquid extraction were 0.28 (v/v), 3(times), 30 min, and 40 min, respectively. The polar impurities from the biomass extraction were efficiently removed by liquid-liquid extraction. The complete concentration of liquid-liquid extract by rotary evaporator was reliable enough to obtain a high purity and yield of paclitaxel for subsequent purification steps.

Phase-Separation Properties of Poly(Ethylene Glycol) had Dextran Solutions In Microfluidic Device (미세 유체장치 내에서 Poly(Ethylene Glycol)과 Dextran 용액의 상 형성 특성 연구)

  • Choi, Joo-Hyung;Chang, Woo-Jin;Lee, Sang-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.244-249
    • /
    • 2007
  • Fluidic conditions for the separation of phases were surveyed in a microfluidic aqueous two-phase extraction system. The infusion ratio between polyethylene glycol (PEG) and dextran solution defines the concentrations of each polymer in micro-channel, which determine the phase-separation. The appropriate ratio between PEG (M.W. 8000, 10%, w/v) and dextran T500 (M.W. 500000, 5%, w/v) in order to perform the separation of phases of both polymers was observed as changing the mixed ratio of both polymers. Based on the fluidic conditions, stable two-phase solutions were obtained within 4% to 8% and 3% to 1% of PEG and dextran, respectively. In addition, the characteristics of the two-phase were discussed. The separation technique studied in the paper can be applied for the implementation of a lab-on-a chip which can detect various biological entities such cells, bacterium, and virus in an integrated manner using built in a biosensor inside the chip.

Separation of a Sugar Mixture by Emulsion Liquid Membranes (에멀젼형 액막법에 의한 당 혼합물의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Separation of fructose and glucose was performed using emulsion liquid membranes with a mixture of an organoboronic acid and a quaternary ammonium salt as a carrier in a batch reactor. In order to find a carrier and an optimal experimental condition suitable to the sugar separation, extraction of each sugar was carried out independently. The effect of various experimental variables, such as initial concentration of sugar in the feed phase, type of organoboronic acids, and w/o ratio, on the sugar separation was investigated, and the concentrations of sugars in each aqueous phase were analyzed. The ratio of degree of extraction of fructose to that of glucose was very high, but the concentration of fructose in the receiving phase was not too high. Therefore, a stronger stripping agent in the receiving phase was required for development of a practical ELM system suitable to the sugar separation.

Calculation of Countercurrent Extraction Process for Separation of [Sm]/[Pr, Nd] in Hydrochloric Acid Solution using Cyanex 572 (염산용액에서 Cyanex 572를 사용하여 [Sm]/[Pr, Nd] 분리를 위한 향류추출 공정변수 계산)

  • Lee, Joo-eun;So, Hong-il;Jang, In-hwan;Ahn, Jae-woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Sm] and [Pr, Nd] group in hydrochloric acid solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor of [Sm]/[Pr, Nd] was 14.59 at pH 1.75 in extraction process and 14.61 at 0.01 M HCl in scrubbing process. The process parameters can be calculated using a theory of optimum extraction ratio. From the result of calculation, the total extraction and scrubbing stage numbers at counter current process were 11 and for maintain extraction ratio the flow rate ratio of feed solution, solvent solution, scrubbing solution was 6.25 : 1.74 : 5.80 using 0.1 M HCl.

The effect of irradiation on hydrodynamic properties of extraction mixtures based on diamides of N-heterocyclic dicarboxylic acids in heavy fluorinated diluents

  • Belova, E.V.;Skvortsov, I.V.;Kadyko, M.I.;Yudintsev, S.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1163-1168
    • /
    • 2019
  • Hydrodynamic properties have been investigated for promising extraction systems: $0.05mol\;L^{-1}$ solutions of di(N-ethyl-4-ethylanilide) of 2,2'-bipyridine-6,6'-dicarboxylic acid, di(N-ethyl-4-fluoroanilide) of 2,6-pyridinedicarboxylic acid and di(N-ethyl-4-hexylanilide) of 2,2'-bipyridine-6,6'-dicarboxylic acid in meta-nitrobenzotrifluoride (F-3) or trifluoromethylphenyl sulfone (FS-13) diluents. To evaluate the perspectives for their use as extraction mixtures at the final stage of the nuclear fuel cycle, the change in density, viscosity, surface tension, and phase separation rate under irradiation with accelerated electrons was studied. The concentrations of extractants in the irradiated mixtures have been determined and the radiation-chemical yields have been calculated. Irradiation significantly decreases the phase separation rate at the stages of extraction and back extraction for all the studied systems. The viscosity of the DYP-7 solution in FS-13 increase above the values suitable for its use in extraction processes.

Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

  • Abkenar, Shiva Dehghan;Hosseini, Morteza;Dahaghin, Zohreh;Salavati-Niasari, Masoud;Jamali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2813-2818
    • /
    • 2010
  • A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion ($TBA^+$)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a $100\;{\mu}L$ micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = $1.0{\times}10^{-4}\;M$, [$TBA^+$] = $2.0{\times}10^{-2}\;M$, [$CHCl_3$] = $100.0\;{\mu}L$ and [$ClO_4$] = $2.0{\times}10{-2}\;M$, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results.

Separation and Recovery of Indole from Model Coal Tar Fraction by Batch Cocurrent 5 Stages Equilibrium Extraction (회분 병류 5단 평형추출에 의한 모델 콜타르 유분 중에 함유된 Indole의 분리 및 회수)

  • Kim, Su Jin;Chun, Yong Jin;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 2007
  • The separation of indole from a model mixture comprising four kinds of nitrogen heterocyclic compounds [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compounds [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN)], biphenyl (Bp) and phenyl ether (Pe) was examined by batch cocurrent 4 stages equilibrium extraction. The model mixture used as a raw material in this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: $240{\sim}265^{\circ}C$). An aqueous solution of formamide was used as a solvent. Indole was recovered more than 99% through 4 stages of the equilibrium extraction. The range of selectivity of indole in reference to DMN obtained through the 5 stages equilibrium extraction was found to be 63~118. The process for separation and recovery of indole contained in coal tar was studied by using the experimental results obtained from this work and the previous work.

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis (Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출)

  • Park, Ji-Min;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2021
  • In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.