• Title/Summary/Keyword: Extraction Feature Vector

Search Result 355, Processing Time 0.025 seconds

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware (멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 대한 성능연구)

  • Ahn, Tae-Hyun;Park, Jae-Gyun;Kwon, Young-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.211-216
    • /
    • 2018
  • In this paper, we studied the way that classify whether unknown PE file is malware or not. In the classification problem of malware detection domain, feature extraction and classifier are important. For that purpose, we studied what the feature is good for classifier and the which classifier is good for the selected feature. So, we try to find the good combination of feature and classifier for detecting malware. For it, we did experiments at two step. In step one, we compared the accuracy of features using Opcode only, Win. API only, the one with both. We founded that the feature, Opcode and Win. API, is better than others. In step two, we compared AUC value of classifiers, Bernoulli Naïve Bayes, K-nearest neighbor, Support Vector Machine and Decision Tree. We founded that Decision Tree is better than others.

Protein Motif Extraction via Feature Interval Selection

  • Sohn, In-Suk;Hwang, Chang-Ha;Ko, Jun-Su;Chiu, David;Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1279-1287
    • /
    • 2006
  • The purpose of this paper is to present a new algorithm for extracting the consensus pattern, or motif from sequence belonging to the same family. Two methods are considered for feature interval partitioning based on equal probability and equal width interval partitioning. C2H2 zinc finger protein and epidermal growth factor protein sequences are used to demonstrate the effectiveness of the proposed algorithm for motif extraction. For two protein families, the equal width interval partitioning method performs better than the equal probability interval partitioning method.

  • PDF

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Wireless Channel Identification Algorithm Based on Feature Extraction and BP Neural Network

  • Li, Dengao;Wu, Gang;Zhao, Jumin;Niu, Wenhui;Liu, Qi
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.141-151
    • /
    • 2017
  • Effective identification of wireless channel in different scenarios or regions can solve the problems of multipath interference in process of wireless communication. In this paper, different characteristics of wireless channel are extracted based on the arrival time and received signal strength, such as the number of multipath, time delay and delay spread, to establish the feature vector set of wireless channel which is used to train backpropagation (BP) neural network to identify different wireless channels. Experimental results show that the proposed algorithm can accurately identify different wireless channels, and the accuracy can reach 97.59%.

Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands (주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출)

  • 지상문;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Feature vectors for conventional speech recognition are usually extracted in full frequency band. Therefore, each sub-band contributes equally to final speech recognition results. In this paper, feature Teeters are extracted indepedently in each sub-band. The cepstral resolution of each sub-band feature is controlled for the optimal speech recognition. For this purpose, different dimension of each sub-band ceptral vectors are extracted based on the multi-band approach, which extracts feature vector independently for each sub-band. Speech recognition rates and clustering quality are suggested as the criteria for finding the optimal combination of sub-band Teeter dimension. In the connected digit recognition experiments using TIDIGITS database, the proposed method gave string accuracy of 99.125%, 99.775% percent correct, and 99.705% percent accuracy, which is 38%, 32% and 37% error rate reduction relative to baseline full-band feature vector, respectively.

License Plate Recognition Using The Morphological Size Distribution Functions (형태학적 크기 분포 함수를 이용한 자동차 번호판 인식)

  • 차상혁;김주영;고광식
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, a new license plate recognition method using the morphological size distribution functions and color images is proposed. The proposed method consists of two steps. The first step is license plate extraction process using the plate color and step edge information in the license plate. The second step is the extraction of character feature vectors using the morphological size distribution functions and character recognition process using the MLP(multilayer perceptron). By the use of morphological size distributions functions, the error that may occur during the character region extraction process is lessened and the recognition performances are improved by the decrease of feature vector dimension.

  • PDF

Color and Motion Feature Extraction Algorithm for Content-Based Video Retrieval (내용 기반 동영상 검색을 위한 컬러 및 모션 특징 추출 알고리즘)

  • 김영재;이철희;권용무
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.187-196
    • /
    • 1999
  • This paper presents an efficient and automatic color and motion feature extraction algorithm for content-based MPEG-l video retrieval. Based on the proposed method. a video retrieval system is implemented. For color feature. the proposed algorithm considers dynamic color iRformation in video data, and thereby can overcome the limits of the previous key-frame based method. For motion feature, we utilize the motion vector in MPEG-l video with color information. and extract the color-motion feature. The proposed algorithm can solve the weakness of the previous location based motion feature method. Finally. the proposed method is evaluated within the implemented video retrieval system.

  • PDF