• Title/Summary/Keyword: Extractant

Search Result 204, Processing Time 0.029 seconds

Elution Characteristics of Arsenic, Cadmium, Copper and Lead in Paddy Soil Nearby Mining Area Using Two Kinds of Extractant (두 가지 추출제를 이용한 광산지 인근 농경지 토양 중 비소, 카드뮴, 구리, 납의 용출 특성 평가)

  • Kwon, Jicheol;Lee, Goontaek;Jung, Myungchae;Kim, Jeong-wook;Yoon, Jeong-ki;Kim, Hyun-Koo;Kim, Ji-in;Lee, Honggil;Kim, Inja;Kim, Taeseung;Kang, Jiyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • This study evaluated the relative extraction ratio (RER) of As and heavy metals (Cd, Cu and Pb) in paddy soils using the two types extractant, 0.05 M EDTA and 0.43 M HNO3. The RER was calculated by dividing the concentrations of metals obtained by 0.05 M EDTA or 0.43 M HNO3 extraction by those obtained by aqua regia extraction. The RER of 0.43 M HNO3 was larger than that of 0.05 M EDTA. Correlation analysis indicated there was statistically significant correlation (p<0.001) between the concentration in aqua regia and 0.05 M EDTA or 0.43 M HNO3. Especially, Cd showed the higher correlation than other metals. Stepwise multiple linear regression analyses indicated soil pH, CEC, organic matter content, and soil texture all influenced the metal extraction rates and bioavailability of the metals.

Solvent extraction of Vanadium and Titanium from Sulfate leaching solutions by Cyanex272, PC88A and Alamine336 (황산(黃酸) 침출용액(浸出溶液)에서 Cyanex272, PC88A 및 Alamine336을 이용한 바나듐(V) 및 티타늄(Ti)의 용매추출(溶媒抽出))

  • Ahn, Jae-Woo;Ahn, Jong-Gwan;Kim, Ju-Yup;Yu, Jeong-Guen;Lee, Sang-Hun;Kim, Dong-Jin
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.34-43
    • /
    • 2007
  • A comparative study of the extraction behavior of vanadium and titanium in sulphate solutions using Cyanex272, PC88A and Alamine336 has been carried out. effect of pH in sulphate solutions, concentration of extractant and extraction isotherms has been studied. Solvent extraction separation studies of vanadium and titanium from the mixed solutions were also carried out in order to obtain a criterion for choosing the more effective extraction regent. From the experimental results, it was conformed that Alamine336 was good extractant to extraction of vanadium and separation from titanium from the mixed solutions.

A Study on the Remediation of Lead Contaminated Soil in a Clay Shooting Range with Soil Washing (토양세척법에 의한 클레이사격장 납 오염토양의 정화에 관한 연구)

  • Lee, In-Hwa;Seol, Myung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.23-31
    • /
    • 2010
  • For an efficient remediation of Pb-contaminated soil (S-1) in a clay shooting range, a soil washing test was performed with mineral acid, organic acid, chelating agent, and chloride. The Pb extraction efficiency of extractant (0.1 M) used in the washing test showed the order of HCl > $Na_2$-EDTA > NTA > DTPA > citric acid > malic acid > succinic acid > acetic acid > $CaCl_2$ > $MgCl_2$, for S-1 soil. As compared to initial Pb concentration, extraction efficiency by the concentration of extractant was 93.35%, 80.80%, 73.92%, and 24.57% in S-1 soil for HCl (0.5 M, pH 1.10), $Na_2$-EDTA (0.01 M, pH 3.99), citric acid (0.5 M, pH 1.27), and $MgCl_2$ (0.1 M, pH 8.82), respectively. S-1 soil had 56.83% of residue form and 43.17% of non-residue form (18.04% of exchangeable form), respectively. Although the concentrations of these fractions sharply decreased after HCl washing, since the exchangeable forms with relatively large mobility are still distributed as high as 18.78% (to Pb total content in residual soils) in S-1 soil, it is necessary to devise a proper management plan for residual soils after soil washing application.

Solvent Extraction of Sn(IV) from Hydrochloric Acid Solution by Tri-Butyl Phosphate(TBP) (염산용액(鹽酸溶液)에서 Tri-Butyl Phosphate(TBP)에 의한 주석(朱錫)(IV)의 용매추출(溶媒抽出))

  • Seo, Jae-Seong;Ahn, Jae-Woo;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.45-51
    • /
    • 2010
  • Solvent extraction behavior of Sn(IV) from hydrochloric acid solution was investigated using TBP(Tri-butyl Phosphate) as an extractant. The experimental parameters, such as the concentration of HCl solution, chloride ions, extractant, and Sn were observed. Experimental results showed that the extraction percent of Sn was increased with increasing the hydrochloric acid and chloride ion concentration. More than 98% of Sn was extracted in 7.0 M HCl by 10% TBP. The optimum extraction stages of Sn for continuous extraction process was theoretically calculated by analysizing the McCabe-Thiele diagram. Stripping of Sn from the loaded organic phases can be accomplished by NaOH as a stripping reagent effectively and 99.3% of Sn was stripped by 2.0M NaOH solution.

Study on the Separation of MAs from HLLW and Their Extraction Behavior Using New Extractants of Amido Podand

  • An, Ye-Guo;Luo, Fang-Xiang;Zhu, Zhi-Xuan;Zhang, Xiang-Ye;Zhu, Wen-Bin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.245-256
    • /
    • 2004
  • The extraction of three kinds of amido podands, N,N,N'N'-tetrabutyl-3-oxa-pentanedi- amide (TBDGA), N,N,N'N'-tetra-isobutyl-3-oxa-pentanediamide(TiBDGA) and N,N,N'N'-tetra- butyl-3,6-dioxa-oct-anediam- ide(TBDOODA) on U(VI),Pu(IV), Am(III), Eu(III) and other metal ions is studied in nitric acid solutions. 40%octanol-kerosene is chosen as diluents to eliminate third phase and emulsion. TBDGA and TiBDGA show extraction selectivity to An(III) and Ln(III) much higher than to U(VI) and Pu(IV). Fe, Ru and Mo is poorly extracted by the three kinds of amid podands in 2~3mol/L $HNO_3$ solutions. Aiming to eliminate interface crude when using simulated HLLW solution in the system of 0.2mol/L TBDGA/Octanol+kerosene, acetohydroxyamic acid was adapted. Distribution ratio of zirconium was decreased when adding acetohydroxyamic acid in aqueous solution, and interface crude disappeared as mixing extractant with HLLW. The counter-current extraction test is carried out in a set of miniature mixer-settler, with 0.2mol/L TBDGA/ 40% octanol-kerosene as extractant to separate U(VI), Pu(IV), Am(III) and Eu(III) from simulated high level liquid waste(HLLW) solution. In battery A, lanthanides and actinides are coextracted into organic phase with the recovery of 99.98% for U(Ⅵ), >99.99% for Pu(IV), and >99.99% for Am(III) and Eu(III) respectively. In battery R1, 99.99% U, 86.2% Pu and a part of Am or Eu are stripped into aqueous phase by 0.2mol/L acetohydroxyamic acid (AHA) in 0.01mol/L $HNO_3$ solution. In battery $R_2$, Am, Eu and remained Pu are completely back-extracted by 0.2mol/L AHA. This separation process contains no salt reagent, and it is not necessary to dilute HLLW feed.

  • PDF

Determination of Radiolysis Produce of DHOA by GC/MS (GC/MS를 이용한 DHOA의 방사선 분해생성물 분석)

  • Yang, Han-Beom;Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Kim, Kwang-Wook;Kim, Jong-Seung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Dihexyloctanamide(DHOA) was used as an extractant or phase modifier with the diamide extractants in a solvent extraction process for a radioactive liquid waste treatment. The degradation compounds of the DHOA extractant, irradiated with $^{60}Co$ gamma ray, were octanoic acid and dihexylamine which are identified by a Fourier transform infrared(FT-IR) and gas chromatograph/mass spectrometer(GC/MS) analysis, and determined by the GC/MS with selected ion monitoring(SIM) mode. Retention behavior of octanoic acid, tridecane (internal standard) and dihexylamine in total ion chromatogram (TIC) were 8.65 min., 9.79 min., and 10.27 min., respectively. With increasing the absorbed dose of the $\gamma$-ray irradiated DHOA, the concentration of octanoic acid was decreased and that of dihexylamine was increased.

  • PDF

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

Preparation of PVA gel beads by Immobilization of HTTA and TOPO on PVA as Solid Phase Extractant and Removal Characteristics of Copper Ions from Aqueous Solution (고체상 추출제로서 폴리비닐알콜에 테노일트리플루오로아세톤과 트리옥틸포스핀 옥사이드를 고정화한 폴리비닐알콜 겔비드의 제조와 수중의 구리이온 제거 특성)

  • You, Hae-Na;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.251-255
    • /
    • 2014
  • PVA gel beads were made by immobilization of thenoyltrifluoroacetone (HTTA) and trioctylphoshineoxide (TOPO) with poly vinyl alcohol (PVA). The prepared PVA gel beads were used for the removal of $Cu^{2+}$ from aqueous solution. The removal characteristics of $Cu^{2+}$ by PVA gel beads was found to follow the pseudo-second-order kinetic equation. The maximum removal capacity calculated from Langmuir isotherm equation was 9.59 mg/g. The optimal pH was in the range of 3.5~6. Even when the PVA gel beads were reused 5 times, the leakage of extractant and the damage of PVA gel beads was not observed.

Application of Soil Washing Technology to the Soil Contaminated by Heavy Metals (중금속에 의해 오염된 토양에 대한 토양세척기법의 적용성 연구)

  • 정동철;이지희;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 1997
  • A series of batch and lab-scale pilot tests were conducted to optimize the design parameters for the application of soil washing techniques to the soil contaminated by heavy metals. Cu, Pb, and Zn were selected as target heavy metals. The concentrations of Cu, Pb, and Zn were 500mg/kg dry soil, 1, 000mg/kg dry soil, and 500mg/kg dry soil, respectively. Citric acid and oxalic acid were used for the extractants. In the batch tests, the extraction efficiencies for Cu, Pb, and Zn were 79%, 72%, 72%, respectively. The proper extractant concentration and dilution ratio(weight/volume) for Cu and Pb were turned to be citric acid 50mM and 1:5, respectively. The extraction efficiencies were enhanced with the addition of 1~2% OA-5 or SDS. From pilot scale tests for Pb, first stage and second stage of soil washing resulted in the extraction efficiency of 59% and 78%, respectively.

  • PDF

Recovery of Li from the Lithium Containing Waste Solution by D2EHPA (리튬함유 폐액으로부터 D2EHPA에 의한 리튬의 회수)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Lee, Ki-Woong;Son, Hyun-Tae
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • A study on the solvent extraction for the recovery of Li from lithium-containing waste solution was investigated using $D_2EHPA$ as an extractant. The experimental parameters, such as the pH of the aqueous solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percentage of Li was increased with increasing the equilibrium pH. More than 50% of Li was extracted in eq. pH 6.0 by 20% $D_2EHPA$. From the analysis of McCabe-Thiele diagram, 95% of Li was extracted by four extraction stage at phase ratio(O/A) of 3.0. Stripping of Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 90 ~ 120 g/L of $H_2SO_4$ was effective for the stripping of Li. Finially, Li was concentrated about 11.85 g/L by continuous stripping process, and then lithium carbonate was prepared by precipitation method.