• 제목/요약/키워드: Extract fault

검색결과 103건 처리시간 0.019초

사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구 (An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining)

  • 이형일;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.47-73
    • /
    • 2020
  • KTX 차량은 수많은 기계, 전기 장치 및 부품들로 구성되어 있는 하나의 시스템으로 차량의 유지보수에는 상당히 많은 전문성과 유지보수 작업자들의 경험을 필요로 한다. 차량 고장발생 시 유지보수자의 지식과 경험에 따라 문제 해결의 시간과 작업의 질적 차이가 발생하며 그에 따른 차량의 가용율이 달라진다. 일반적으로 문제해결은 고장 매뉴얼을 기반으로 하지만 경험이 많고 능숙한 전문가의 경우는 이와 더불어 개인의 노하우를 접목하여 신속하게 진단하고 조치를 취한다. 이러한 지식은 암묵지 형태로 존재하기 때문에 후임자에게 완전히 전수되기 어려우며, 이를 위해 사례기반의 철도차량 전문가시스템을 개발하여 데이터화된 지식으로 바꾸려고 하는 연구들이 있어왔다. 하지만, 간선에 가장 많이 투입되고 있는 KTX 차량에 대한 연구나 텍스트의 특징을 추출하여 유사사례를 검색하는 시스템 개발은 아직 미비하다. 따라서, 본 연구에서는 이러한 차량 유지보수 전문가들의 노하우를 통해 수행된 고장들에 대한 진단과 조치 이력을 문제 해결의 사례로 활용하여 새롭게 발생하는 고장에 대한 조치가이드를 제공하는 지능형 조치지원시스템을 제안하고자 한다. 이를 위하여, 2015년부터 2017년동안 생성된 차량고장 데이터를 수집하여 사례베이스를 구축하였고, 차원축소 기법인 비음수 행렬 인수분해(NMF), 잠재의미분석(LSA), Doc2Vec을 통해 고장의 특징을 추출하여 벡터 간의 코사인 거리를 측정하는 방식으로 유사 사례를 검색하였으며, 위의 알고리즘에 의해 제안된 조치내역들 간 성능을 비교하였다. 분석결과, 고장 내역의 키워드가 적은 경우의 유사 사례 검색과 조치 제안은 코사인 유사도를 직접 적용하는 경우에도 좋은 성능을 낸다는 것을 알 수 있었고 차원 축소 기법들의 성능 비교를 통해 문맥적 의미를 보존하는 차원 축소 방식 중 Doc2Vec을 적용하는 것이 가장 좋은 성능을 나타낸다는 것을 알 수 있었다. 텍스트 마이닝 기술은 여러 분야에서 활용을 위한 연구들이 이루어지고 있는 추세이나, 본 연구에서 활용하고자 하는 분야처럼 전문적인 용어들이 다수이고 데이터에 대한 접근이 제한적인 환경에서 이러한 텍스트 데이터를 활용한 연구는 아직 부족한 실정이다. 본 연구는 이러한 관점에서 키워드 기반의 사례 검색을 보완하고자 텍스트 마이닝 기법을 접목하여 고장의 특징을 추출하는 방식으로 사례를 검색해 조치를 제안하는 지능형 진단시스템을 제시하였다는 데에 의의가 있다. 이를 통해 현장에서 바로 사용 가능한 진단시스템을 단계적으로 개발하는데 기초자료로써 시사점을 제공할 수 있을 것으로 기대한다.

지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석 (Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area)

  • 이사로;오현주;민경덕
    • Spatial Information Research
    • /
    • 제14권1호
    • /
    • pp.129-150
    • /
    • 2006
  • 본 연구에서는 GIS 및 확률 기법을 이용하여 광상의 위치와 지질, 지화학 및 지구물리 자료들 간의 상관관계를 분석하고, 광상부존가능도(Mineral potential map) 작성 및 검증을 수행하였다. 연구지역은 1:25만 강릉도폭지역 a이며, 구축된 데이터베이스 자료는 1:25만 광상분포도, 지화학도, 지질도, 부우게 중력이상도, 자력이상도이다. 본 연구에 사용된 광상은 퇴적기원의 비금속광상(고령토, 도석, 규석, 운모, 연옥, 석회석, 납석)이다. 원소별 지화학도 작성은 채취된 각 시료 3,595개의 원소별 분석치를 이용하여 IDW 보간법으로 만들었다. 구축된 지화학도는 Al, Alkalinity, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, W, Zn, $Cl^-,\;F^-,\;{NO_2}^-,\;{NO_3}^-,\;{PO_4}^{3-},\;{SO_4}^{2-}$, pH, Eh 및 Conductivity로 총 32개이다. 이러한 광상과 관련 요인들 간의 상관관계는 확률기법인 weight of evidence를 적용하여 계산하였고, 이를 바탕으로 광상부존가능도를 작성하였다. 광상부존가능도는 wieght of evidence의 W+와 W- 값을 GIS 중첩분석에 적용하여 작성하였다. 계산된 광상부존가능지수는 기존 광상부존가능성을 정량적으로 설명하고 표현하며 검증할 수 있는 값이다. 각 기법을 이용하여 작성한 광상부존가능도의 검증결과는 85.66%의 정확도를 나타내었다.

  • PDF

탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구 (Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis)

  • 원종필;신정균;하지호;전형구
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.51-71
    • /
    • 2024
  • 탄성파 탐사는 지하자원 개발, 지반 조사, 지층 모니터링 등에 널리 사용되고 있는 지구물리탐사 방법으로 정확한 지층 구조 영상을 제공해주기 때문에 지층의 지질학적 특성 해석에 필수적으로 활용된다. 일반적으로는 탄성파 구조 보정 영상을 시각적으로 분석하여 지질학적 특성을 해석하지만 최근에는 탄성파 구조 보정 자료에 대한 정량적인 분석을 통해 원하는 지질학적 특성을 정확하게 추출하고 해석하는 탄성파 속성 분석이 널리 연구되고 있다. 탄성파 속성 분석은 탄성파 자료에 기반한 지질학적 해석에 정량적인 근거를 제시해줄 수 있기 때문에 석유 및 가스 저류층 분석, 단층 및 균열대 조사, 지층 가스 분포 파악 등의 다양한 분야에서 활용되고 있다. 하지만 탄성파 속성 분석은 탄성파 자료 내 잡음에 취약하므로 속성 분석의 정확도 향상을 위해서는 중합 후 탄성파 자료에 대한 추가적인 잡음 제거가 수반되어야 한다. 본 연구에서는 중합 후 탄성파 자료에 대한 무작위 잡음 제거 및 및 탄성파 속성 분석 정확도 개선을 위해 4가지의 잡음 제거 방법을 적용하고 비교한다. FX 디콘볼루션, DSMF, Noise2Noiose, DnCNN을 각각 포항 영일만 고해상 탄성파 자료에 적용하여 탄성파 무작위 잡음을 제거하고 잡음이 제거된 탄성파 자료로부터 에너지, 스위트니스, 유사도 속성을 계산한다. 그리고 각 잡음 제거 방법의 특성, 잡음 제거 결과, 탄성파 속성 분석 결과를 정성적 및 정량적으로 분석한 후, 이를 기반으로 탄성파 속성 분석 결과 향상을 위한 최적의 잡음 제거 방법을 제안한다.