• Title/Summary/Keyword: Extracorporeal circulation system

Search Result 20, Processing Time 0.021 seconds

Activation of Fibrinolytic System during Open Heart Surgery (개심술중 섬유소융해계의 활성화에 관한 연구)

  • Park, Lee-Tae;Seo, Gyeong-Pil;Lee, Jeong-Sang
    • Journal of Chest Surgery
    • /
    • v.22 no.4
    • /
    • pp.525-547
    • /
    • 1989
  • Hemorrhagic tendency observed in open heart surgery patients has been attributed, among other causes, to increased fibrinolytic activity during extracorporeal circulation. But the exact mechanism of enhanced fibrinolytic activity which occurs during extracorporeal circulation is still unknown. So, we studied and compared the changes of parameters of fibrinolytic and protein C system according to time obtained from the plasma of 31 adult open heart surgery patients[EGG group] and 10 adult general thoracic surgery patients[control group], in order to confirm the hypothesis that the activated protein C system might affect the fibrinolytic system during extracorporeal circulation. In ECC group, the nature of the enhanced fibrinolytic activity that evolved during extracorporeal circulation was characterized by significant increase in fibrin degradation products[P < 0.01] and significant decrease in plasminogen and alpha2-antiplasmin[P < 0.05, P < 0.01] in spite of adequate amount of heparin administration. These changes were most pronounced in the early phase of extracorporeal circulation and normalized after termination of extracorporeal circulation. The results of these observations were the same after volume correction with the value of hematocrit. The change of volume corrected protein C ratio during extracorporeal circulation revealed similar pattern to those of plasminogen and alpha2-antiplasmin [P < 0.01], but volume corrected ratio of free protein S showed significant increase after the commencement of extracorporeal circulation then decreased after extracorporeal circulation. Although the above mentioned changes occur similarly in both bubble type oxygenator-used and membrane oxygenator-used patients groups, but the degree of decrease was more severe in membrane oxygenator-used patients group [P < 0.01] and showed much slower recovery to reach to the preextracorporeal circulation level. These results confirm the hypothesis that the enhanced fibrinolysis during extracorporeal circulation might be caused by the activation of protein C system and the activation is possibly linked to the appearance of thrombin from contact activation of blood after wide exposure to the synthetic surfaces of extracorporeal circuit. Key words: Extracorporeal circulation, Enhanced fibrinolysis, Protein C system.

  • PDF

The Concept of Artificial Liver Support by Using the Extracorporeal Circulation System

  • Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.25-28
    • /
    • 2015
  • In this study, a basic research on artificial liver was performed for its application to people on the waiting list of liver transplant or patients with hepatic insufficiency. Artificial livers are generally classified into mechanic type, bioartificial type, and hybrid type. An extracorporeal circulation device was examined herein, which is indispensable in the application of an artificial liver, for its effectiveness in supporting the recovery of liver functions. Extracorporeal circulation system is a treatment and life-support system which sends out the patient's blood, removes toxicity by various methods, and then sends the blood back to the interior of the body. This study used an extracorporeal circulation system which enables the Plasma Perfusion by CVVH method, and applied the program of Bioateco corp. Animals with acute hepatic insufficiency were produced to apply the extracorporeal circulation device. As a result, their ammonia, bilirubin, SGOT, SGPT, and bile acid levels rose, confirming the liver function restoration in the experimental animals.

Influences of Prolonged Extracorporeal Circulation on Organ Function in Dogs (장시간의 체외순환이 생체에 미치는 영향)

  • 김의윤
    • Journal of Chest Surgery
    • /
    • v.7 no.1
    • /
    • pp.73-78
    • /
    • 1974
  • Influences on organ function were studied in animals during prolonged extracorporeal circulation with a bubble type of oxygenator. More than six hours of total cardiopulmonary bypass was performed under mild hypothermia by means of an extracorporeal circulation system in five dogs. Obtained results were summarized as follows. 1. The renal function was not so impaired seriously until four hours of extracorporeal circulation. However, there was more serious impairment of renal function in this study when extracorporeal circulation was carried out for a period of five hours or more. 2. There was gradual hepatic damage during extracorporeal circulation and the damage was more significant after bypass for a period of five to six hours. 3. There was a significant decrease in serum K during bypass, irrespective of the pump oxygenator prime with a high K solution. The reason for this is complex and due to many factors, however, it was evidently related to serum glucose levels during extracorporal circulation.

  • PDF

A study on the Optimal Condition for Application with Extracorporeal Membrane Oxygenation (ECMO 시스템 적용을 위한 최적화 조건에 관한 연구)

  • Kim, Jae-Yeol;Song, Min-Jong;You, Sin;Ma, Sang-Dong;Kim, Chang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.13-18
    • /
    • 2001
  • The ECMO system, including umbilical cord and membrane type oxygenator was connected with extracorporeal circulation unit, was applied to the fetus growth model of goat. The maximum survival time of goat fetus was 48 hours. Average blood rate for the extracorporeal circulation was $223{\pm}15.2 ml/min.$ The survival time of fetus was deeply related to body temperature, blood circulation and water temperature, anesthetized time, and fetus weights. Extern variables that are composed of anesthetized time, fetus weights, change of hemoglobin, circuit pressure, related to the survival time for fetus corrected the problem of previous ECMO model that is controlled by roller pump. It is directly delivered to heart on load. Applying the results from new ECMO model, further research will provide to the system of ECMO for human.

  • PDF

Development of Bubble Detector for Extracorporeal Circulation Support System (체외 순환 보조 장치 위한 공기방울 감지 장치 개발)

  • Lee, Hyuk-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.298-302
    • /
    • 2010
  • Extracorporeal circulation support system is a device for repiratory and heart failure treatment, and there have been many trials for development and clinical application in the world. These devices need to be careful while using is air embolism. Air embolism can be a lethal complication of surgical procedures during which venous pressure at the site of surgery is sub-atmospheric or air is forced under pressure into a body cavity or using extracorporeal circulation support system. To solve the problem, we developed the air detector using relative dielectric constant change. In experiments with a mock circulation system, the proposed system showed a signal difference depending on the amount of air in the tube.

Changes of Plasma Immunoglobulins and Complements after Extracorporeal Circulation (체외순환후 혈청내 Immunoglobulin 과 보체의 변화에 관한 연구 - 막형 인공산화기와 기포형 인공산화기의 비교 -)

  • 이철주
    • Journal of Chest Surgery
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 1988
  • The exposure of blood to foreign materials can cause the denaturation of plasma protein components such as immunoglobulins and complements. And those phenomena increase the morbidity and mortality after intracardiac operations through the cardiopulmonary bypass. From April, 1987 to September, 1987, we had observed the serial changes of plasma total protein IgG, IgA, IgM, complements[C3, C4] in bubble oxygenator group[n=5] and membrane oxygenator group[n=5]. Statistically significant difference between two groups were present in total protein and C3. We conclude that using membrane oxygenator in long extracorporeal circulation can reduce the activation of alternative pathway of complement system, and which can reduce post-perfusion complications of the lung though we can`t prove it in mass populations.

  • PDF

Effect of Pulsatile Versus Nonpulsatile Blood Flow on Renal Tissue Perfusion in Extracorporeal Circulation (체외순환에서 박동 혈류와 비박동 혈류가 신장의 조직관류에 미치는 영향)

  • Kim Hyun Koo;Son Ho Sung;Fang Yang Hu;Park Sung Young;Kim Kwang Taik;Kim Hark Jei;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.13-22
    • /
    • 2005
  • It has been known that pulsatile flow is physiologic and more favorable to tissue perfusion than nonpulsatile flow. The purpose of this study is to directly compare the effect of pulsatile versus nonpulsatile blood flow to renal tissue perfusion in extracorporeal circulation by using a tissue perfusion measurement system. Material and Method: Total cardiopulmonary bypass circuit was constructed to twelve Yorkshire swines, weighing 20$\~ $30 kg. Animals were randomly assigned to group 1 (n=6, non pulsatile centrifugal pump) or group 2 (n=6, pulsatile T-PLS pump). A probe of the tissue perfusion measurement system $(QFlow^{TM}-500)$ was inserted into the renal pa­renchymal tissue. Extracorporeal circulation was maintained for an hour at a pump flow of 2 L/min after aortic cross-clamping. Tissue perfusion flow of the kidney was measured at baseline (before bypass) and every 10 minutes after bypass. Serologic parameters were collected at baseline and 60 minutes after bypass. Result: Baseline parameters were not different between the groups. Renal tissue perfusion flow was substantially higher in the pulsatile group throughout the bypass (ranged 48.5$\~$ 64 in group 1 vs. 65.8$\~$88.3 mL/min/100 g in group 2, p=0.026$\~$ 0.45) The difference was significant at 30 minutes bypass $(47.5{\pm}18.3\;in\;group\;1\;vs.\;83.4{\pm}28.5$ mL/min/100 g in group 2, p=0.026). Serologic parameters including plasma free hemoglobin, blood urea nitrogen, and creatinine showed no differences between the groups at 60 minutes after bypass (p=NS). Conclusion: Pulsatile flow is more beneficial to tissue perfusion of the kidney in short-term extracorporeal circulation. Further study is suggested to observe the effects to other vital organs or long-term significance.

Experimental Studies on Extracorporeal Circulation by Sarns Heart-Lung Machine with Total Prime of Hartman's Solution (Sarns 심폐기의 혈희석 체외순환에 관한 실험적 연구)

  • 김근호
    • Journal of Chest Surgery
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1975
  • Total body perfusion using Sarns Heart-Lung-Machine, five head pump motor system with Travenol disposable bubble oxygenator was attempted in the dogs by the hemodilution method with total prime of buffered Hartman`s solution under moderate hypothermia. The first of all, the functions of Sarns Heart-Lung-Machine and effects of the hemodilution perfusion by buffered Hartman`s solution was studied. At the same time the changes of pressure of artery and vein, gas contents of the blood, and influence on the blood pictures were observed before, during, and after perfusion in 1-2 days. Hemodilution rates were the ranges of 85.0ml/kg to 97.3ml/kg and perfusion flow rates were maintained with the average 80. 5ml/kg/min [the ranges of 73.3ml/kg/min to 92.8ml/kg/min]. Hypothermia was employed between $35^{\circ}C$ and $31^{\circ} of the esophageal temperature. The total body perfusion was continued for 50-60 minutes. In the total cardiopulmonary bypass, atriotomy, ventriculotomy, and atrioventriculotomy were performed respectively. Arterial pressure was ranged approximately between 50 mmHg and 140 mmHg, but generally, it was maintained over 75 mmHg. Venous pressure was measured between 3.8 cm$H_2O$ and 16.0 cm$H_2O$. Optimum oxygenation could be achieved when oxygen flow into the oxygenator was maintained approximately at 5. 5L/min. In this way, the $pO_2$, $pCO_2$, and oxygen saturation were measured before, during, and afterperfusion in 1-2 days. The $pCO_2$ ranged approximately between 26.0 mmHg and 38.5 mmHg, but generally, it was maintained in the average 30.9-32.5mmHg. The $pO_2$ was ranged between 73.0mmHg and 332.2 mmHg, but it was maintained in the average 103.0-219.0 mmHg. Oxygen saturation was measured over 95. 0% during and after extracorporeal circulation respectively. Erythrocyte count, hemoglobin, hematocrit, and leucocyte count were decreased to 49.2%, 49.0%, 49.4%, and 21. 1% of the preoperative value during extracorporeal circulation respectively and these reductions were not recovered until 1-2 days after perfusion. These. resulted from relatively high degree of hemodilution rate and operative bleeding during these experimental studies. The platelets count was also decreased about to 71% during perfusion, on the contrary, it was increased progressively after perfusion and in 1-21 days after perfusion, the value was returned to preoperative contro1 level. Three dogs were all recovered after extracorporeal circulation.

  • PDF

Extracorporeal Life Support with a Twin-pulse Life Support (T-PLS) System (이중 박동성 인공심폐기(Twin-Pulse Life Support, T-PLS)를 이용한 심폐순환보조)

  • Lee, Dong-Hyup;Lee, Jang-Hoon;Jung, Tae-Eun
    • Journal of Chest Surgery
    • /
    • v.40 no.7 s.276
    • /
    • pp.512-516
    • /
    • 2007
  • A mechanical circulatory support system is a life-saving option for treating acute severe respiratory failure or cardiac failure. There are currently a few types of assist devices and the Twin-Pulse Life Support (T-PLS) system is a kind of pulsatile pump. We report here on three patients with severe life threatening cardiopulmonary dysfunction who had the T-PLS system used as an assist device. The indications for applying the T-PLS system were continuing respiratory or cardiac failure in spite of maximal ventilatory and inotropic support. There were two patients with acute respiratory failure due to infection and one patient with cardiac failure due to acute myocarditis. One respiratory failure patient and one cardiac failure patient survived after applying the T-PLS system for 3 days and 5 days, respectively. The T-PLS system is useful as an assist device and it should be considered before multi-organ failure occurs.

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.