• 제목/요약/키워드: Extracellular

검색결과 3,596건 처리시간 0.028초

Recombinant human KAI1/CD82 attenuates M1 macrophage polarization on LPS-stimulated RAW264.7 cells via blocking TLR4/JNK/NF-κB signal pathway

  • Hyesook Lee;Jung-Hwa Han;Kangbin An;Yun Jeong Kang;Hyun Hwangbo;Ji Hye Heo;Byung Hyun Choi;Jae-Joon Kim;Seo Rin Kim;Soo Yong Lee;Jin Hur
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.359-364
    • /
    • 2023
  • KAI1/CD82, a membrane tetraspanin protein, can prevent various cancers and retinal disorders through its anti-angiogenic and anti-metastatic capacity. However, little is known about its anti-inflammatory effect and molecular mechanism. Therefore, the present study aimed to inLPSvestigate effect of a recombinant protein of the large extracellular domain of human KAI1 (Gly 111-Leu 228, rhKAI1) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage-like cells and mouse bone marrow-derived macrophages (BMDM) and to identify its underlying mechanism. Our data showed that rhKAI1 suppressed expression levels of classically macrophages (M1) phenotype-related surface markers F4/80+CD86+ in LPS-stimulated BMDM and RAW264.7 cells. In addition, LPS markedly increased mRNA expression and release levels of pro-inflammatory cytokines and mediators such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α, cyclooxygenase-2, nitric oxide and prostaglandin E2, whereas these increases were substantially down-regulated by rhKAI1. Furthermore, LPS strongly increased expression of NF-κB p65 in the nuclei and phosphorylation of ERK, JNK, and p38 MAPK. However, nuclear translocation of NF-κB p65 and phosphorylation of JNK were greatly reversed in the presence of rhKAI1. Especially, rhKAI1 markedly suppressed expression of toll-like receptor (TLR4) and prevented binding of LPS with TLR4 through molecular docking predict analysis. Importantly, Glu 214 of rhKAI1 residue strongly interacted with Lys 360 of TLR4 residue, with a binding distance of 2.9 Å. Taken together, these findings suggest that rhKAI1 has an anti-inflammatory effect on LPS-polarized macrophages by interacting with TLR4 and down-regulating the JNK/NF-κB signaling pathway.

20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway

  • Chunxue Li ;Yating Zhan ;Rongrong Zhang;Qiqi Tao ;Zhichao Lang ;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.515-523
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), one of the main components of ginseng, has anti-inflammatory, anti-estrogenic, and anti-tumor activities. It is known that activated hepatic stellate cells (HSCs) are the primary producers of extracellular matrix (ECM) in the liver, and the Wnt/β-catenin pathway participates in the activation of HSCs. We aimed to explore whether PPD inhibits liver fibrosis is associated with the Wnt/β-catenin pathway inactivation. Methods: The anti-fibrotic roles of PPD were examined both in vitro and in vivo. We also examined the levels of Wnt inhibitory factor 1 (WIF1), DNA methyltransferase 1 (DNMT1) and WIF1 methylation. Results: PPD obviously ameliorated liver fibrosis in carbon tetrachloride (CCl4)-treated mice and reduced collagen deposition. PPD also suppressed the activation and proliferation of primary HSCs. Notably, PPD inhibited the Wnt/β-catenin pathway, reduced TCF activity, and increased P-β-catenin and GSK-3β levels. Interestingly, WIF1 was found to mediate the inactivation of the Wnt/β-catenin pathway in PPD-treated HSCs. WIF1 silencing suppressed the inhibitory effects of PPD on HSC activation and also restored α-SMA and type I collagen levels. The downregulation of WIF1 expression was associated with the methylation of its promoter. PPD induced WIF1 demethylation and restored WIF1 expression. Further experiments confirmed that DNMT1 overexpression blocked the effects of PPD on WIF1 expression and demethylation and enhanced HSC activation. Conclusion: PPD up-regulates WIF1 levels and impairs Wnt/β-catenin pathway activation via the downregulation of DNMT1-mediated WIF1 methylation, leading to HSC inactivation. Therefore, PPD may be a promising therapeutic drug for patients with liver fibrosis.

대황과 실리마린의 병용투여의 간섬유화 보호 효과 (Liver Protective Effect of the Co-treatment of Rhei Radix et Rhizoma and Silymarin on TAA-induced Liver Injury)

  • 정일하;지상우;노성수
    • 대한한방내과학회지
    • /
    • 제44권3호
    • /
    • pp.402-417
    • /
    • 2023
  • Objective: Liver fibrosis is a highly conserved wound-healing response and the final common pathway of chronic inflammatory injury. This study aimed to evaluate the potential anti-fibrotic effect of the combination of Rhei Radix et Rhizoma water extract (RW) and silymarin in a thioacetamide (TAA)-induced liver fibrosis model. Methods: The liver fibrosis mouse model was established through the intraperitoneal injection of TAA (1 week 100 mg/kg, 2-3 weeks 200 mg/kg, 4-8 weeks 400 mg/kg) three times per week for eight weeks. Animal experiments were conducted in five groups; Normal, Control (TAA-induced liver fibrosis mice), Sily (silymarin 50 mg/kg), RSL (RW 50 mg/kg+silymarin 50 mg/kg), and RSH (RW 100 mg/kg+silymarin 50 mg/kg). Biochemical analyses were measured in serum, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), and ammonia levels. Liver inflammatory cytokines and fibrous biomarkers were measured by Western blot analysis, and liver histopathology was evaluated through tissue staining. Results: A significant decrease in the liver function markers AST and ALT and a reduction in ammonia and total bilirubin were observed in the group treated with RSL and RSH. Measurement of reactive oxygen species and MDA revealed a significant decrease in the RSL and RSH administration group compared to the TAA induction group. The expression of extracellular matrix-related proteins, such as transforming growth factor β1, α-smooth muscle actin, and collagen type I alpha 1, was likewise significantly decreased. All drug-administered groups had increased matrix metalloproteinase-9 but a decreasing tissue inhibitor of matrix metalloproteinase-1. RSL and RSH exerted a significant upregulation of NADPH oxidase 2, p22phox, and p47phox, which are oxidative stress-related factors. Furthermore, pro-inflammatory proteins such as cyclooxygenase 2 and interleukin-1β were markedly suppressed through the inhibition of nuclear factor kappa B activation. Conclusions: The administration of RW and silymarin suppressed the NADPH oxidase factor protein level and showed a tendency to reduce inflammation-related enzymes. These results suggest that the combined administration of RW and silymarin improves acute liver injury induced by TAA.

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang;Bo Hyun Lee;Eun Hye Byun;Soomin Lee;Dawon Kang;Dong Kun Lee;Min Seok Song;Seong-Geun Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2023
  • The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과 (Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

고세균 122종의 보존적 COG pathways와 유전자 (Conserved COG Pathways and Genes of 122 Species of Archaea)

  • 이동근;이상현
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.944-949
    • /
    • 2023
  • 이 연구의 목적은 122종의 고세균 종에 보존된 대사 경로와 보존된 유전자를 확인하는 것이었다. 각각의 122개 고세균이 63개의 COG 대사 경로, 이를 구성하는 822개의 COG, 총 4,877개의 COG를 보유하고 있는지 분석했다. 대사경로에서는 archaeal ribosomal proteins만이 가장 보존적이었다. 122종의 고세균 모두에 공통적인 COG는 7개의 COG pathways에서 46개, 그리고 그 외가 20개였다. COG pathways에서는 ribosome을 구성하는 29개, tRNA synthetase와 전사인자가 각각 5개, RNA polymerase를 구성하는 3개, 그리고 tRNA modification에 관련된 2개의 COG가 공통적이었다. COG pathways에 속하지 않고 122종의 고세균에 공통적인 보존적 유전자까지 고려하면 외부와 세포질을 구분 짓는 세포벽과 세포외기질의 합성, 복제, 전사, 번역, 단백질 대사에 관련된 유전자들 중에서 일부가 공통적이었다. 계통수에서 구한 각 고세균의 distance value를 분류단위로 보면 Euryarchaeota 문의 Halobacteria강의 평균이 가장 낮았고 표준편차는 Thaumarchaeota 문의 Nitosospharia강, 강을 알 수 없는 Thaumarchaeota문의 고세균, Euryarchaeota 문의 Halobacteria 강, Crenarchaeota 문의 Thermoprotei 강, 기타 고세균(OA)이 높았다. 계통수 분석으로 6가지의 공통점을 찾았다. 본 연구결과는 보존된 유전자에 관한 자료 외에도 의약품 개발, 균주 개선을 위한 유전자의 선택 등에 활용될 수 있을 것이다.

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

으름덩굴 에탄올 추출물의 항노화 효과 (Anti-aging Effect of Akebia quinata Decaisne Ethanol Extract)

  • 김유진;권순현;송지현;이소미;김용민
    • 대한화장품학회지
    • /
    • 제50권1호
    • /
    • pp.67-75
    • /
    • 2024
  • 피부는 자외선, 감염 등과 같은 외부 요인에 의해 피부 노화가 진행된다. 이러한 요인들에 의해 피부의 섬유아세포는 단백질 분해효소인 matrix metalloproteinases (MMPs)를 분비한다. MMPs는 세포외기질에 위치하는 콜라겐의 분해를 유도하여 노화에 직접적인 영향을 미친다. 으름덩굴(Akebia quinata Decaisne) 줄기는 항산화, 항염증 효과가 있는 것으로 보고되었다. 하지만 으름덩굴 줄기 에탄올 추출물(AQSEE)의 항노화 효과에 대해서는 알려지지 않았다. 따라서 인간 섬유아세포에서 TNF-α로 유도된 MMP-1 억제 효과를 연구하였다. MTT asaay를 통해 AQSEE의 세포 생존율을 확인한 결과 400 ㎍/mL까지 독성을 나타내지 않았다. RT-qPCR과 ELISA를 통해 MMP-1 mRNA와 단백질 분비를 억제하는지 확인한 결과 100, 200, 400 ㎍/mL 농도에서 유의하게 감소하였다. 또한, western blotting을 통해 MAPKs 신호전달경로와 전사인자의 인산화가 감소하는지 확인하였다. 그 결과 p38, c-Jun, p65의 인산화가 모든 농도에서 유의하게 감소하였다. AQSEE의 radical 소거능을 확인하기 위해 DPPH, ABTS assay를 진행한 결과 모든 농도에서 유의하게 감소하였다. 본 연구 결과를 통해 MMP-1 억제 효과와 radical 소거능을 확인하였으며, 이는 항노화 물질로 사용될 수 있음을 시사한다.