• Title/Summary/Keyword: Extracellular

Search Result 3,597, Processing Time 0.025 seconds

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Purification and Characterization of Extracellular Chitinase Produced by Marine Bacterium, Bacillus sp. LJ-25

  • Lee, Jung-Suck;Joo, Dong-Sik;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.307-311
    • /
    • 2000
  • Abstract Extracellular chitinase was purified from the culture liquid of the marine bacterium, Bacillus sp. LJ-25 , and its enzymatic properties were examined. The purified chitinase exhibited a single band on SDS-PAGE and the molecular weight was estimated to be approximately 50 kDa. The optimum pH and temperature for the enzymatic activity were 7.0 and $35^{\circ}C$, respectively. The activity of the chitinase was strongly inhibited by $Zn^{2+}$ and slightly inhibited by $Ba^{2+},{\;}Co^{2+},{\;}Mn^{2+},{\;}and{\;}Cu^{2+}$. The purified chitinase did not hydrolyze $p-nitrophenolN-acetyl-{\bata}-D-glucosaminide{\;}(GlcNAc)_2$ and Micrococcus lysodeikticus cells, which are known to be the substrates for exo-type chitinase. Among the hydrolyzates of colloidal chitin, $(GlcNAc)_2$ was in the highest concentration with small amounts of GlcNAc and $(GlcNAc)_3$..

  • PDF

Impact of the Isolation Source on the Biofilm Formation Characteristics of Bacillus cereus

  • Hussain, Mohammad Shakhawat;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • The human pathogen and food spoiler Bacillus cereus can form biofilms that act as a persistent source of contamination, which is of public health concern. This study aimed to understand how the source of isolation might affect the behavior of biofilm formation. Biofilm formation abilities of 56 strains of B. cereus isolated from different environments, including human food poisoning, farm, and food, were determined. Crystal violet assay results revealed significant (p < 0.05) differences in biofilm formation abilities among the strains isolated from different sources only at an early stage of incubation. However, strain origin showed no impact on later stage of biofilm formation. Next, correlation of the group of isolates on the basis of their biofilm-forming abilities with the number of sessile cells, sporulation, and extracellular polymeric substance (EPS) formation was determined. The number of sessile cells and spores in biofilms was greatly influenced by the groups of isolates that formed dense, moderate, and weak biofilms. The contribution of extracellular DNA and/or proteins to EPS formation was also positively correlated with biofilm formation abilities. Our results that the source of isolation had significant impact on biofilm formation might provide important information to develop strategies to control B. cereus biofilm formation.

Characterization of α-D-manosidase activity from Bacillus safensis MA-01 (Bacillus safensis MA-01 유래 알파-만노사이데이즈의 효소학적 특성)

  • Lee, Bo Mi;Kim, Joo Won;Park, Jae Kweon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • An extracellular alkaline ${\alpha}$-D-mannosidase produced by a strain named as MA-01 was produced and its preliminary enzyme activity was characterized. Upon determining the 16S rDNA sequence and its homology search, the strain was identified to be one of species of the Bacillus safensis. Localization of enzyme was elucidated that ${\alpha}$-D-mannosidase can be found in culture medium as an extracellular enzyme. In addition, partial enzyme activity of 63% compared with the extracellular enzyme activity was observed in membrane protein. The optimal pH and temperature of the ${\alpha}$-D-mannosidase were pH 7.5 and $37^{\circ}C$, respectively. The $K_m$ and $V_{max}$ values of the ${\alpha}$-D-mannosidase in crude enzyme toward p-nitrophenyl-${\alpha}$-D-mannopyranoside were determined to be $455.6{\mu}M$ and $10.8{\mu}mole/min/mg$ of protein, respectively. To the best of our knowledge, this is the first report described the alkaline ${\alpha}$-D-mannosidase from the family of B. safensis.

Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola - Mechanistic approach

  • Punjabi, Kapil;Mehta, Shraddha;Yedurkar, Snehal;Jain, Rajesh;Mukherjee, Sandeepan;Kale, Avinash;Deshpande, Sunita
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • Biosynthesis of nanoparticles has acquired particular attention due to its economic feasibility, low toxicity and simplicity of the process. Extracellular synthesis of nanoparticles by bacteria and fungi has been stated to be brought about by enzymes and other reducing agents that may be secreted in the culture medium. The present study was carried out to determine the underlying mechanisms of extracellular silver nanoparticle synthesis by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Synthesized nanoparticles were characterized by spectroscopy and electron microscopic techniques. Protein profiling studies were done using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D-SDS PAGE) and subjected to identification by Mass Spectrometry. Characterization studies revealed synthesis of 50 nm nanoparticles of well-defined morphology. Total protein content and SDS PAGE analysis revealed a reduction of total protein content in test (nanoparticles solution) samples when compared to controls (broth supernatant). 45.45% of the proteins involved in the process of nanoparticle synthesis were identified to be oxidoreductases and are thought to be involved in either reduction of metal ions or capping of synthesized nanoparticles.

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Purification and Characterization of Extracellular Inulinase from Bacillus sp. (Bacillus sp.가 세포외로 생산하는 Inulinase의 정제 및 특성)

  • 김경남;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.490-495
    • /
    • 1990
  • The extracellular inulinase from Bacillus spp. was purified to a single protein through a sequence of operations including ammonium sulfate fractionation, heat treatment, DEAE Sepharose C1-6B ion exchange chromatography, Sephadex 6-100 and Sephadex 6-150 gel filtration. The purified enzyme was confirmed to be a $\beta$ -D-fructofuranosidase(EC 3.2.1.26) which was much more active on sucrose than on inulin(I/S = 0.2). The maximal inulinase activity was observed at pH 6.0 and at the temperature of $50^{\circ}C$. The mo1ecular weight of the enzyme was about 56, 000. Tryptophan and histidine residues of the enzyme molecule were found to be essential for its catalytic activity.

  • PDF

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Ultrastructural Study on the Development of the Flexor Digital Tendon of the Hand in Human Fetus (인태아 수지굴근건의 발육에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Ahn, Ho-Beom;Nam, Kwang-Il
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.157-175
    • /
    • 1996
  • The development of flexor digital tendon of the hand was studied by electron microscopy in human fetuses ranging from 9 mm to 260 mm crown rump length. The primordium of tendons was first identified as discrete collection of mesenchymal cells at 25 mm fetus. Synovial sheath formation had commenced by 40 mm fetus and was complete by 70 mm fetus. Cell junction or adhesion sites at all ages were noted between the tendon cells. When dilatation of the synovial cavity occurred, two types of synovial cells were observed. A-type cells had numerous vesicles and large vacuoles. In contrast, B-type cells were characterized by abundant rough endoplasmic reticulum and well-developed Golgi complex. By $150mm{\sim}260mm$ fetuses, a mojority of the synovial cells were type B. The most remarkable difference between the synovial cells of full-term fetus and adult was the larger amount of collagen fibers in the latter. The vascular buds were first observed between the individual fibril bundles in the interfascicular space at 150 mm fetus. At 25 mm fetus, collagen fibrils were first noted within narrow cytoplasmic recesses which were continued with the extracellular space. Collagen fibrils were filled in almost entire extracellular space at 150 mm fetus. Besides collagen fibrils in the extracellular space small elastic fibers were also identified and followed in their development.

  • PDF