• Title/Summary/Keyword: Extinguishing powder

Search Result 23, Processing Time 0.025 seconds

Extinguishing Characteristics of Zeolite adsorbed Dry Chemical Powder (분말 소화약제가 흡착된 제올라이트의 소화 특성)

  • Shin, Changsub;Park, Hojun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.59-63
    • /
    • 2012
  • The use of dry chemical powder has been increased as it can be stored for a long period and sustain in stable condition compared to gas or liquid phase extinguishing agents. A new type of dry chemical powder using Zeolite was produced in the research. Chemical powder was adsorbed into Zeolite 13X, a porous material appearing negative catalytic effect, to create extinguishing powder obtaining core shell structure and measured physical properties and run a small scale fire extinguishment. SEM, XRD, TA analysis was also executed, and extinguishing characteristics were measured by fire extinguishing experiment on oil pool fire. The experiment showed that the average particle size of Zeolite 13X was equivalent, indicating about $3{\pm}1{\mu}m$ and thermal analysis result illustrated that Zeolite 13X showed exothermic reaction peaks at $900^{\circ}C$ due to solid-state transformation. Extinguishing characteristics on oil fire of $NaHCO_3$/Zeolite 13X and $NH_4H_2PO_4$/Zeolite were improved, influenced by adsorbed extinguishing powders on Zeolite 13X and Zeolite 13X that contains high phase transition temperature.

A Study on the Development of Fire Extinguishing System for Machinery Spaces of a Small Ship (소형선박 무인기관실에 적합한 소화장치 개발연구)

  • Kim, Dong-Suk;Kang, Dae-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.130-131
    • /
    • 2005
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small ship was performed. Fire tests were conducted inside the compartments having volums 8$m^3$, 2.9$m^3$ and 4.5$m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel. In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

The A Test of Physical Property of Fire Extinguishing Agent according to Durable Years of the Third-class Powder Extinguisher (제3종 분말소화기의 내용연수에 따른 소화약제의 미세도 실험)

  • Ju-Dal, Son;Ha-Sung, Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.117-124
    • /
    • 2022
  • This study collected powder extinguishers with 6-10 years of elapsed life from January 2012 to January 2017 in market, factory, and apartment areas to experiment with changes in fineness and to examine the characteristics of extinguishing power. First, in the case of ABC powder, 98.3 wt% of the 8-year market area and 98.6 wt% of the 10-year apartment complex were found to be inappropriate in the first, second, and third arithmetic average analysis of the powder extinguisher from 6 to 10 years. That is, the fine distribution and size of the powder extinguishing agent particles should be managed within an appropriate range. It is analyzed that the powder fire extinguisher may experience a change in the fineness of the powder depending on the external environment exposure, placement, management status, and age of use, resulting in a decrease in digestive power or inability to radiate. Second, the fire extinguisher cannot be used in the initial fire suppression depending on the place of deployment, the environment of deployment, the progress of the number of years of use, and maintenance, so it is necessary to strengthen the device that enables fire extinguisher maintenance and inspection. Third, in the manufacturing process, the charging method should also be reviewed in consideration of the conditions of the workplace, the humid season, and the rainy environment.

A Study on the Development of Fire Extinguishing System for Machinery Spaces of a Small craft (무인기관실에 효과적인 자동소화장치개발 관한 연구)

  • Lee, Chan-Jea;Kang, Dae-Sun;Kim, Dong-Suk;Kwark, Ji-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small boats was performed. Fire tests were conducted inside the compartments having volumes 2.9, 4.5, $8m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel, In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

Development of Fire Extinguishing System Suitable for Unmanned Engine Room of a Small Ship (소형선박 기관실화재에 대한 자동소화시스템 개발연구)

  • Kim, Dong-Suk;Kwark, Ji-Hyun;Kang, Dae-Sun;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.96-100
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small ship was performed. Fire tests were conducted inside the compartments having volume $8m^3,\;4.5m^3\;and\;2.9m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel. In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

A Study on the Development of Fire Extinguishing System for Machinery Spaces of Small craft (무인기관실의 효과적인 자동소화장치 개발 연구)

  • Gang, Dae-Seon;Lee, Chan-Jae;Kim, Dong-Seok;Gwak, Ji-Hyeon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.21
    • /
    • pp.15-30
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small boats was performed. Fire tests were conducted inside the compartments having volumes 2.9, 4.5, 8㎥ respectively. The openings and fans were estavlished on the walls of the compartments. Diesel oil was used for the test ruel, In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

Characteristics of Fixed Aerosol Auto Fire-Extinguishing Systems (고체에어로졸 자동소화장치 특성)

  • Choi, Byoung-O;Hong, Chang-Su;Kwon, Seong-Won;Park, Sun-Gyu
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.277-282
    • /
    • 2008
  • We developed fixed aerosol auto fire-extinguishing systems which are different from fire suppression systems like powder extinguisher or halon extinguishing system, etc. Fixed aerosol auto fire-extinguishing substances which are including solid alkali salts generated by combustion of solid composition. It represents high fire suppression ability due to particle friendly auto fire-extinguishing systems for the reason of excluding toxic substances in it's composition.

  • PDF

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.