• Title/Summary/Keyword: External Exposure Characteristics

Search Result 53, Processing Time 0.032 seconds

An Investigation of the Terahertz Absorption Characteristics of a Graphene Oxide Aqueous Solution Using Microfluidic Technology

  • Ningyi Cai;Boyan Zhang;Qinghao Meng;Siyu Qian;Bo Su;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2023
  • The vibratory and rotational levels of many biological macromolecules lie in the terahertz (THz) band, which means that THz techniques can be used to identify and detect them. Moreover, since the biological activity of most biomolecules only becomes apparent in aqueous solution, we use microfluidic technology to study the biological properties of these biomolecules. THz time-domain spectroscopy was used to study the THz absorption characteristics of graphene oxide (GO) aqueous solution at different concentrations and different exposure times in fixed electric or magnetic fields. The results show that the spectral characteristics of the GO solution varied with the concentration: as the concentration increased, the THz absorption decreased. The results also show that after placing the solution in an external electric field, the absorption of THz first increased and then decreased. When the solution was placed in a magnetic field, the THz absorption increased with the increase in standing time. In this paper, these results are explained based on considerations of what is occurring at the molecular scale. The results of this study provide technical support for the further study of GO and will assist with its improved application in various fields.

Effectiveness of Calcium Nitrite in Retarding Corrosion of Steel in Concrete

  • Abosrra, L.;Youseffi, M.;Ashour, A.F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Corrosion of steel bars embedded in concrete admixed with 0%, 2% and 4% calcium nitrite (CN), having compressive strengths of 20 and 46 MPa was investigated. Reinforced concrete specimens were immersed in 3% NaCl solutions for 1, 7 and 15 days where 0.4A external current was applied to accelerate the chemical reactions. Corrosion rate was measured by retrieving electrochemical data via potentiodynamic polarization technique. Pull-out tests of reinforced concrete specimens were then conducted to assess the corroded steel-concrete bond characteristics. Experimental results showed that corrosion rate of steel bars and steel-concrete bond strength were dependent on concrete strength, amount of CN added and accelerated corrosion period. As concrete strength increased from 20 to 46 MPa, corrosion rate of embedded steel decreased. The addition of 2% CN to concrete of 20 MPa was not effective in retarding corrosion of steel at long time of exposure. However, the combination of higher strength concrete and 2% or 4% CN appear to be a desirable approach to reduce the effect of chloride-induced corrosion of steel reinforcement. After 1 day of corrosion acceleration, specimens without CN showed higher bond strength in both concrete mixes than those with CN. After 7 and 15 days of exposure, the higher concentration of CN, the higher bond strength in both concrete mixes achieved, except for the concrete specimen of 20 MPa compressive strength with 2% CN that recorded the highest deterioration in bond strength at 15 days of exposure.

Experimental Study of Strength Degradation according to Fixed Knot Method and Outdoor Exposure Environment of Auxiliary Rope for High Altitude Work (추락 방지용 보조로프의 고정 매듭법과 옥외 노출 환경에 따른 강도저하 평가에 관한 연구)

  • Sang Min Song;Tae Sun Kim;Keon Yeob Kim;Song Mi Kim;Oh Heon Kwon;Woo Rim Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.10-19
    • /
    • 2023
  • Fall accidents account for the highest accident fatality rate in the construction industry. In addition, wearing and using a safety belt is the most realistic and important preventive measure to reduce fall accidents. Safety belts are protective devices worn by individual workers; they prevent workers from falling and allow for time to rescue the workers. However, the legal standards for safety belts only stipulate the materials, specifications, and strength of parts; there is no provision for an auxiliary rope fixing method to fix the safety belts safely. Due to this reason, workers in industrial sites arbitrarily fix and use the auxiliary rope. Currently, the most used method to fix the auxiliary rope is to tie a knot, which significantly lowers the strength of the material compared to the standard strength. Moreover, many construction sites are located outdoors, so the strength of the materials used in the auxiliary rope is inevitably reduced due to various external environmental conditions. Therefore, to solve this problem, this study was conducted to evaluate the strength of the material of the auxiliary rope for fixing the safety belt and the knot-tying method for the auxiliary rope. In this study, the exposure conditions for the effects of temperature and moisture were set to reflect the characteristics of the construction industry. The results of this study are expected to be used for standards establishment and the safe use of the auxiliary rope for safety belts in actual field applications.

Corrosion Characteristics of Excavated Bronze Artifacts According to Corrosion Environment (부식 환경에 따른 출토 청동 유물의 부식 특성)

  • Jang, Junhyuk;Bae, Gowoon;Chung, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In excavated bronze artifacts, corrosion products of various shapes and colors are observed due to multiple corrosion factors coexisting in the burial environment, and these corrosion products can constitute important data not only in terms of long-term corrosion-related information, but also in connection with preservation of artifacts. As such, scientific analysis is being carried out on the corrosion layer and corrosion products of bronze artifacts, and the corrosion mechanism and the characteristics of corrosion products elucidated, which is essential for interpreting the exposed burial environment and its association with corrosion factors inside the burial environment. In this study, after classifying excavated bronze artifacts according to alloy ratio and fabrication technique, comprehensive analysis of the surface of corrosion artifacts, corrosion layer, and corrosion products was carried out to investigate the corrosion mechanism, formation process of the corrosion layer, and characteristics of corrosion products. The study designated two groups according to alloy ratio and fabrication technique. In Group 1, which involved a Cu-Sn-Pb alloy and had no heat treatment, the surface was rough and external corrosion layers were formed on a part, or both sides, of the inside and the outside, and the surface was observed as being green or blue. α+δ phase selection corrosion was found in the metal and some were found to be concentrated in an empty space with a purity of 95 percent or more after α+δ phase corrosion. The Cu-Sn alloy and heat-treated Group 2 formed a smooth surface with no external corrosion layer, and a dark yellow surface was observed. In addition, no external corrosion layer was observed, unlike Group 1, and α corrosion was found inside the metal. In conclusion, it can be seen that the bronze artifacts excavated from the same site differ in various aspects, including the formation of the corrosion layer, the shape and color of the corrosion products, and the metal ion migration path, depending on the alloy ratio and fabrication technique. They also exhibited different corrosion characteristics in the same material, which means that different forms of corrosion can occur depending on the exposure environment in the burial setting. Therefore, even bronze artifacts excavated from the same site will have different corrosion characteristics depending on alloy ratio, fabrication technique, and exposure environment. The study shows one aspect of corrosion characteristics in specific areas and objects; further study of corrosion mechanisms in accordance with burial conditions will be required through analysis of the corrosive layer and corrosive product characteristics of bronze artifacts from various regions.

Characteristic of Inorganic Contaminants and Conservation Treatment Materials for the Three-Storied Stone Pagoda of Bulguksa Temple in Gyeongju (경주 불국사 삼층석탑(석가탑)의 무기오염물과 보수물질 특성)

  • Lee, Gemma;Kim, Sa Duk;Park, Sungchul;Kim, Derk Moon
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.421-431
    • /
    • 2018
  • Analyses of the three-storied stone pagoda at the Bulguksa temple in Gyeongju were carried out in order to identify the cause for material characteristics of inorganic contaminants and conservation treatment materials. Results indicated that foreign soil or weathering soil caused yellow discoloration of the pagoda, reddish-brown contaminants were formed by goethite (FeOOH), an iron oxide mineral, and black pollutants were formed by manganese (Mn) oxide, leading to discoloration of the rock. Among the restoration materials used in the past, cement mortar could cause whitening by reacting with the external environment. The results were used as basic standards to evaluate the material characteristics of the surface contaminants and identify a set of effective conservation treatments. Nevertheless, continuous monitoring is required, as there is a high possibility of regeneration of pollutants in the future because of the continuous exposure of the pagoda to the external environment.

The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape (원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Lee, Jung-Hyong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.

The Style of Romanticism on Fashion(I) (로맨티시즘 복식의 양식(I))

  • 이경아;전혜정
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.1
    • /
    • pp.141-157
    • /
    • 2004
  • The purpose of this study is to clarify the style of romanticism in fashion. Romanticism is advocating the conception called the respect of diversity and individuality in the modern society dominated by postmodernism trying to accept the various values.. In this study, the characteristics of romanticism are examined through the bibliographies on philosophy, aesthetics, architecture and art. In fashion. 19C is based on the costume history books and pictures. The characteristics of romanticism in literature and art which are applied to fashion are sensuality, ornament, exoticism and complexity. On the basis of these characteristics, the 19C fashion of romanticism are analyzed as follows. ㆍ Sensuality to emphasize sexual region of woman's body and to make ‘X’ silhouette is through exaggeration and exposure. This is the characteristic to relieve femininity. ㆍ Ornamentation is expressed in the gorgeous color and the varied material. details and trimming to add the fantastic mood, and the accessory to express the aristocratic elegance. This is a very important characteristic that produces the fantastic and romantic mood. ㆍExoticism to express aspiration for East is expressed either in items or accessories imported from the East. or in exotic material and pattern. This is the characteristic of fashion to express the desire to escape from the reality in the mysterious mood. ㆍMingler is expressed, contrasting or harmonizing the various patterns, color, material in a fashion by the textile with the rich color and print of the various feeling and many trimming. This is the external characteristic of the romanticism fashion combined the experimental mind of the technical progress with the romantic trend in those days. These characteristics of romanticism fashion in the 19th century presented with the various phenomena by working complexly rather than independently.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

Effects of localised liquid fertilization of N, P, K and Ca on root development in Zoysia matrella, Cynodon dactylon and Stenotaphrum secundatum

  • Ow, Lai Fern;Yusof, Mohamed Lokman Mohd
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.76-86
    • /
    • 2018
  • Turfgrass species were evaluated for their rooting and foliar characteristics, and their interaction with the soil. The rooting system was divided into three compartments, one above another, such that the top and bottom compartments of the root system could be supplied with a nutrient deprived solution. Exposure of parts of the roots to nitrate deprivation caused a localised retardation of root initiation and extension, compared with zones receiving the full supply of nutrients. This resulted in considerable modification to root form, coupled with a significant depression in foliar growth. The extension of roots was the least affected by the deprivation of potassium. Phosphate and calcium deprivations gave rise to similar responses in root and foliar formation. Results from this study showed that external concentrations of nitrogen, phosphorus, potassium and calcium are required by the root system in varying amounts for optimal growth of roots. Turfgrass coverage and turf quality ratings further reinforced these findings. No significant difference was observed between the different grasses examined here. All three species responded similarly to the deprivation of the various nutrients. Results from this study confirmed that targeted fertilization programs are beneficial and can help reduce cost, chemical usage and prevent leachate and contamination.

Clothing Norms & Conflict of 20·30s Women in Work Place -Focus on Types of Work Places- (한국 20·30대 여성의 직장 복식규범과 갈등 -직장의 유형에 따른 현황조사를 중심으로-)

  • Kim, Tae Eun;Ha, Jisoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.2
    • /
    • pp.342-352
    • /
    • 2016
  • This study examined the fashion culture of 20-30s working women through clothing norm relationships in the workplace. A literature research was conducted along with qualitative research, in-depth interviews in order to understand the domestic working environment and fashion culture such as lifestyle and consumer culture characteristics of 20-30s working women. The results were: First, it showed that the increased number of members having various inclinations caused subcultures through an increase of women's economic activities and transition to a knowledge-information society in domestic work places that changed into a business casual that recognized employees' autonomy and diversity. Second, in the working place, clothing norms coexist as stipulated by statutes, company rules, and official documents as well as others implied by experiences of sanction against members. Workplace closing norms are classified into norms of exposure that draw attention to clothes and casual clothes. Third, it showed that factors pressuring clothing norms are classified as external pressures and by spontaneous self-censorship that cause conflict and confusion with working women's fashion according to the degree of pressure. Two kinds of pressure by others (or types of departments and members) were observed.