• 제목/요약/키워드: External Dose Rate

검색결과 196건 처리시간 0.03초

국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가 (Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type)

  • 전성훈;이성연;김혁재;김민성;김광표
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

THE FACTORS WHICH AFFECT THE EXTERNAL RADIATION DOSE RATE OF PET-CT PATIENTS

  • Cho, Ihn Ho;Kim, Su Jin;Han, Eun Ok
    • Journal of Radiation Protection and Research
    • /
    • 제37권4호
    • /
    • pp.231-236
    • /
    • 2012
  • This study derived measures to reduce exposure doses by identifying factors which affect the external radiation dose rate of patients treated with radiopharmaceuticals for PET-CT tests. The external radiation dose rates were measured on three parts of head, thorax and abdomen at a distance of 50cm from the surface of 60 PET-CT patients. It showed there are changes in factors affecting the external radiation dose rate over time after the administration of F-18 FDG. The external radiation dose rate was lower in the patients with more water intake than those with less water intake before the injection of radiopharmaceuticals at all three points: right after the injection of radiopharmaceuticals (average 4.17 mins), after the pre-PEET-CT urination step (average 77.47 mins), and right after the PET-CT test (average 114.15 mins). The study also found there is a need to increase the amount of water intake before the injection of radiopharmaceuticals in order to maintain a low external radiation dose rate in patients. This strategy is only possible under the assumption that the quality of the video has not changed after conducting this study on the relations between the image and quality. This study also found a need to use radiopharmaceuticals with the minimum amount needed for each patient because F-FDG doses affects the external radiation dose rate at the point right after the injection of radiopharmaceuticals. Urination frequency was the most significant factor to affect the external radiation dose rates at the point right after the PET-CT test and the point after the pre-PET-CT urination step. There is a need to realize the strategy to increase the urination frequency of patients to maintain the external radiation dose rate low (average 77.47 mins) before and after the injection of radiopharmaceuticals. In addition, at this point, there is a need to take advantage of personal strategies because the external radiation dose rate is lower if the fasting time is shorter, the contrast medium is used, and the amount of water intake is increased after the administration of radiopharmaceuticals. Finally this study found the need to be able to generalize these findings through an in-depth research on the factors affecting the external radiation dose rate, which includes radiopharmaceutical dose, urination frequency, the amount of water intake, fasting time and the use of contrast medium.

영광 원자력 발전소 주변 환경 방사능 측정에 관한 연구 (The study on Measuring of Environmental Radioactivity in the Vicinity of Yonggwang Nuclear Power Plant)

  • 박종섭
    • 자원환경지질
    • /
    • 제32권3호
    • /
    • pp.273-280
    • /
    • 1999
  • In order to protect inhabitans' health and to collect data for prediction of the effcts from accidental emission of rasioactive materials from nuclear power plant, exposed dose rate be monitored within the limit dose rate. This research was carried out to investigate the accumulation of environmental radioactivity around Younggwang Nuclear Power Plant, and to infer and in infer and assay the additional exposed dose rate of inhabitants in Younggwang site from the operation of nuclear plant operation. External radiation dose rate, radiation environmental samples, and exposed dose rate of inhabitants in Younggwang site were investigated for estimaing environment activity in the vicinity of the nuclear power plant area. For the external radiation dose rate, the result showed that range of normal variation was found and any artificial radioisotope was not deteted in the analysis of environmental samples. Exposed dose rate of inhabitants was lower than 0.4% of the limit value of ICRP and it may be concluded that there was no effect on inhabitants and environment from the operation of nuclear power plant.

  • PDF

병기 IB 자궁경부암의 방사선치료에서 외부방사선치료와 고선량율 강내치료의 최적선량 배합 (Optimum Dose Combination of External Radiation and High Dose Rate ICR in FIGO IB Uterine Cervical Cancer)

  • 이상욱;서창옥;정은지;김우철;장세경;금기창;김귀연
    • Radiation Oncology Journal
    • /
    • 제14권3호
    • /
    • pp.201-209
    • /
    • 1996
  • 목적 : FIGO 병기 Ib 자궁경부편평상피암 환자에서 고선량율 강내치료를 이용한 방사선치료후 환해율, 5년 국소제어을, 5년 생존율 및 예후인자, 방사선 합병증을 분석하여 고선량율 강내치료의 효용성을 평가하고자 하였다. 그리고 심각한 후기 합병증 없이 만족스런 국소 제어율을 얻기 위한 외부방사선선량과 강내치료선량의 최적 선량배합을 알아보고자 하였다. 대상 및 방법 : 1979. 5 - 1990. 12월 까지 연세암센타 치료방사선과에서 자궁경부 편평상피암 FlGO 병기 Ib로 진단된후 근치적 목적하에 외부 및 강내치료를 받은 162명의 환자들을 대상으로 치료 결과를 후향적 분석하였다. 외부 방사선 치료는 LINAC 10MV X-ray를 이용해 180-200cGy/fr씩 4000-4600cGy14.5-5주를 전골반 부위에 시행하였근데, 일부환자에서 2000-4000 cGy에서 중앙차폐(midline block)를 시행하였다. 코발트 선원을 이용한 원격 조정 아프터 로딩 고선량율 강내치료를 A점에 1회당 300cGy씩 주 3회, 총 10-13회 (3000-3900 cGy)실시하여 A 점에 들어간 총방사선 조사량은 6420 - 9500cGy 으로 평균 8394 cGy 였다. 결과 : 방사선 치료후 완전 관해율은 $99.4\%$ 였다. 5년 전체생존율은 $91.1\%$이고, 5년 무병생존율은 $90.9\%$였다. 추적 관찰 기간동안 치료 실패 양상을 관찰해 보면 국소 실패만 보인 경우는 7명이었고 원격전이만 보인경우가 6명이었으며, 국소 및 원격전이가 모두 발생한 경우가 1예 있어서 국소제어 실괘율은 $4.9\%$(8/163), 원격전이율은 $4.3\%$(7/164)였다. 후기 합병증은 38명 ($23.5\%$)에서 발생하였초, 그 중 30병 직장 합병증으로 $18.5\%$ 후기 합병증 발생율을 보였고, 방광 합병증은 8명에서 발생하여 $4.9\%$ 후기 합병증 발생율을 보였다. 직장 합병증이 생긴 환자관에서 직장에 소사된 방사선량은 평균 7887 cGy 이었고, 합병증이 발생하지 않은 환자군의 평균조사량은 7488 cGy이었다. 결론 : 근치적 목적으로 외부 방사선 치료 및 고선량률 강내 치료는 FIGO병기 Ib 자궁경 부편평상피암을 치료하는데 매우 효과석이라 생각하였고, 외부방사선치료중 중앙차폐를 시행하여 A점 선량이 75Gy를 넘지 않게 방사선치료 설계를 하면 심각 합병증없이 좋은 치료성적을 얻을 수 있겠다.

  • PDF

18-FDG EXTERNAL RADIATION DOSE RATES IN DIFFERENT BODY REGIONS OF PET-MRI PATIENTS

  • Han, Eunok;Kim, Ssangtae
    • Journal of Radiation Protection and Research
    • /
    • 제38권3호
    • /
    • pp.157-165
    • /
    • 2013
  • To determine the factors affecting the external radiation dose rates of patients undergoing PET-MRI examinations and to assess the trends of these differences, we measured the changes in the dose rates of $^{18}F$-FDG during a set period of time for each body region. Consistent with theoretical predictions, the dose rate decreased over time in patients undergoing PET-MRI examinations. Furthermore, immediately after the $^{18}F$-FDG injection, the dose rate in the chest region was the highest, followed by the abdominal region, the head region, and the foot region. The dose rate decreased drastically as time passed, by 2.47-fold, from $339.23{\pm}74.70mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection to $102.71{\pm}26.17mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. In the foot region, there were no significant changes over time, from $32.05{\pm}20.23mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection, to $23.89{\pm}9.14mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. The dose rate is dependent on the individual characteristics of the patient, and differed depending on the body region and time point. However, the dose rates were higher in patients who had a lower body weight, shorter stature, fewer urinations, lower fluid intake, and history of diabetes mellitus. To decrease radiation exposure, it is difficult or impossible to change factors inherent to the patient, such as sex, age, height, body weight, obesity, and history of diabetes mellitus. However, factors which can be changed, such as the $^{18}F$-FDG dose, fasting time, fluid intake, number of urinations, and contrast agent dose can be controlled to minimize the external radiation exposure of the patient.

자궁경부암 강내 방사선 조사장치에 의한 직장 및 방광의 피폭선량 평가 (Dose Distribution of Rectum and Bladder in Intracavitary Irradiation)

  • 추성실;오원용;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제2권2호
    • /
    • pp.261-270
    • /
    • 1984
  • The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiation and medical records of 203 patients who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analized. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem applicator to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids were measured for low dose rate irradiation system and high dose rate remote control afterloading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results ; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as $4\~7cm$ width and high dose rate system showed as $5\~6cm$. 2. In horizontal angulation of tandem to body axis, the low dose rate system revealed mid position$64.6\%$, left deviation $19.2\%$and right deviation $16.2\%$. 3. In longitudinal angulation of tandem to body axis, the mid position was $11.8\%$ and anterior angulation $88.2\%$ in low dose rate system but in high dose rate system, anterior angulation was $98.5\%$. 4. Down ward displacement of ovoids below external os was only $3\%$ in low dose rate system and $66.7\%$ in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses an4 TDF were 50, 70 Gy and 141, 123, including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 93, 47 Gy and 230, 73 in high dose rate system but in low doss rate system, 123, 52 Gy and 262, 75 respectively. 8. Doses and TDF in bladder and rectum were 70, 68 Gy and 124, 120 in low dose rate system, but in high dose rate system, 58, 64 Gy 98, 110 respectively, and then grades of injuries in bladder and rectum were 25, $30\%$ and 18, $23\%$ respectively.

  • PDF

자궁경부암 강내 방사선조사에 있어서 고 및 저 선량율방법에 의한 선량율 비교 고찰 (Comparison Study of Dose Rate and Physical Parameters in Low and High Dose Rate Intracavitary Radiation Systems for Carcinoma of the Uterne Cervix.)

  • 양칠용
    • 대한방사선치료학회지
    • /
    • 제1권1호
    • /
    • pp.70-78
    • /
    • 1985
  • The intrauterine irradiation is essential to achieve adequate tumor dose to centeral tumor mass in radio therapy for uterine malignancy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The comparison study of currently using 2 systems was undertaken. The simulation films and medical records of 135 patients who was treated with intrauterine irradiation at one of general hospitals in Busan and Seoul between Jan. 1983 and June 1983, were critically analized and physical parameters of low dose rate system and remote controlled high dose rate system were measured. The physical parameters include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids, the radiation dose ratio to rectum and bladder to reference point A. Followings were summary of study results: 1. In distances between lateral walls of vaginal fornices the low dose rate system showed wide distribution and relatively larger distances. In low dose rate system 5.0-5.9 cm was $55.89\%$ 6.0-6.9 cm: $23.53\%$, 4.0-4.9cm: $10.29\%$, 3.0-3.9cm: $10.29\%$, and in high dose rate system 5.0-5.9cm was $80.59\%$, 4.0-4.9cm: $17.91\%$, $6.0\~6.9\;cm:\;1.5\%$. 2. In lateral angulation of tandem to body axis, the low does system revealed mid position (the position along body axis) $64.7\%$, Lt. deviation $19.13\%$ and Rt. deviation $16.17\%$. However the high dose rate system revealed mid position $49.26\%$ Lt. deviation $40.29\%$ and Rt. deviation $10.45\%$. 3. In longitudinal angulation of tandem to body axis the mid position was $11.77\%$ and anterior angulation $88.23\%$ in low dose rate system but in high dose rate system the mid position was $1.56\%$ and anterior angulation $98.44\%$. 4. Down ward displacement of ovoids below external os was only $2.94\%$ in low dose rate system and $67.69\%$ in high dose rate system. 5. The radiation dose ration to rectum to reference point A was $102.70\%$ in high dose rate system and $70.09\%$ in low dose rate system. The dose ratio to bladder to reference point A was $78.14\%$ in high dose rate system and $75.32\%$ in low dose rate system.

  • PDF

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.