• 제목/요약/키워드: External Boundary Extraction

검색결과 9건 처리시간 0.03초

Adaptive Thinning Algorithm for External Boundary Extraction

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제4권4호
    • /
    • pp.75-80
    • /
    • 2016
  • The process of extracting external boundary of an object is a very important process for recognizing an object in the image. The proposed extraction method consists of two processes: External Boundary Extraction and Thinning. In the first step, external boundary extraction process separates the region representing the object in the input image. Then, only the pixels adjacent to the background are selected among the pixels constituting the object to construct an outline of the object. The second step, thinning process, simplifies the outline of an object by eliminating unnecessary pixels by examining positions and interconnection relations between the pixels constituting the outline of the object obtained in the previous extraction process. As a result, the simplified external boundary of object results in a higher recognition rate in the next step, the object recognition process.

홍채 인식을 위한 홍채 영역 추출 (The study of iris region extraction for iris recognition)

  • 윤경록;양우석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.181-183
    • /
    • 2004
  • In this paper, We proposed an algorithm which extraction iris region from 2D image. Our method is composed of three parts : internal boundary defection and external boundary detection. Since eyelid and eyelash cover part of the boundary and the size of iris changes continuously, it is difficult to extract iris region accurately. For the interior and exterior boundary detection, we used partial differentiation of histogram. Performance of the proposed algorithm is tested and evaluated using 360 iris image samples.

  • PDF

Object Recognition using Comparison of External Boundary

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제7권3호
    • /
    • pp.134-142
    • /
    • 2019
  • As the 4th industry has been widely distributed, there is a need for a process of real-time image recognition in various fields such as identification of company employees, security maintenance, and development of military weapons. Therefore, in this paper, we will propose an algorithm that effectively recognizes a test object by comparing it with the DB model. The proposed object recognition system first expresses the outline of the test object as a set of vertices with the distances of predefined length or more. Then, the degree of matching of the structures of the two objects is calculated by examining the distances to the outline of the DB model from the vertices constituting the test object. Because the proposed recognition algorithm uses the outline of the object, the recognition process is easy to understand, simple to implement, and a satisfactory recognition result is obtained.

Building Extraction from Lidar Data and Aerial Imagery using Domain Knowledge about Building Structures

  • Seo, Su-Young
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.199-209
    • /
    • 2007
  • Traditionally, aerial images have been used as main sources for compiling topographic maps. In recent years, lidar data has been exploited as another type of mapping data. Regarding their performances, aerial imagery has the ability to delineate object boundaries but omits much of these boundaries during feature extraction. Lidar provides direct information about heights of object surfaces but have limitations with respect to boundary localization. Considering the characteristics of the sensors, this paper proposes an approach to extracting buildings from lidar and aerial imagery, which is based on the complementary characteristics of optical and range sensors. For detecting building regions, relationships among elevation contours are represented into directional graphs and searched for the contours corresponding to external boundaries of buildings. For generating building models, a wing model is proposed to assemble roof surface patches into a complete building model. Then, building models are projected and checked with features in aerial images. Experimental results show that the proposed approach provides an efficient and accurate way to extract building models.

Automatic Visual Feature Extraction And Measurement of Mushroom (Lentinus Edodes L.)

  • Heon-Hwang;Lee, C.H.;Lee, Y.K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1230-1242
    • /
    • 1993
  • In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.

  • PDF

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

Simplified Representation of Image Contour

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.317-322
    • /
    • 2018
  • We use edge detection technique for the input image to extract the entire edges of the object in the image and then select only the edges that construct the outline of the object. By examining the positional relation between these pixels composing the outline, a simplified version of the outline of the object in the input image is generated by removing unnecessary pixels while maintaining the condition of connection of the outline. For each pixel constituting the outline, its direction is calculated by examining the positional relation with the next pixel. Then, we group the consecutive pixels with same direction into one and then change them to a line segment instead of a point. Among those line segments composing the outline of the object, a line segment whose length is smaller than a predefined minimum length of acceptable line segment is removed by merging it into one of the adjacent line segments. As a result, an outline composed of line segments of over a certain length is obtained through this process.

계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델 (Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion)

  • 박주영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권11호
    • /
    • pp.589-600
    • /
    • 2002
  • 변형 모델은 볼륨영상으로부터 관심 대상 객체의 3차원적 경계면 구조 추출을 위해 효과적인 접근 방법을 제공한다. 그러나, 기존 변형 모델은 초기 조건에 민감하고, 심한 함몰 및 돌출 부위를 가지는 복잡한 경계면을 잘 표현하지 못하면, 모델 내 구성 요소들 간에 자기교차를 일으킬 수 있는 세가지 주요 제한점이 있다. 본 논문에서는 기존 변형 모델이 갖는 이러한 제한점을 개선함으로써 복잡한 기하학적 표면 형태를 가지는 객체의 경계면 추출에 효과적인 변형 모델을 제안한다. 첫째, 제안 변형 모델은 다해상도 볼륨영상 피라미드를 기반으로 모델구성 요소들을 계층적으로 리샘플링한다. 이 접근은 객체의 경계면을 멀티스케일 방식으로 추출함으로써 초기화에의 의존성을 극복할 뿐 아니라, 모델 구성 요소들의 크기를 복셀 크기에 따라 항상 균일하게 유지함으로써 모델이 영상의 복잡한 특성 정보에 따라 유동적으로 변형될 수 있게 한다. 둘째, 제안 변형 모델은 기존 모델에서 가지는 내력과 외력 외에 자기교차방지력을 포함한다. 자기교차방지력은 제한 거리 이내로 근접한 비인접 모델구성 요소들간에 척력을 적용함으로써 자기교차를 사전에 방지한 수 있게 한다. 본 논문에서는 다양한 합성 볼륨영상 및 뇌 MR 볼륨영상에 대한 실험을 통해서 제안 모델이 초기화 위치에 의존하지 않고 자기교차 없이 복잡한 함몰 및 돌출 경계면 구조를 성공적으로 추출한 결과를 보인다.

윤곽선 추적에 의한 고딕체 한글의 신속인식에 관한 연구 (A Fast Recognition System of Gothic-Hangul using the Contour Tracing)

  • 정주성;김춘석;박충규
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.579-587
    • /
    • 1988
  • 일반적인 한글 자동 인식 방법은 세선화 과정을 통한 문자의 골격 추추르 기본자소의 분리 및 인식과정으로 이루어진다. 그러나 이 방법은 복잡한 세선화 과정이 필요하고 잡음에 민감하여 전처리 과정에서는 많은 처리가 필요하며 인식과정에서는 복잡성을 피할 수 없다. 본 연구에서는 고딕체 한글의 기본자소들이 윤곽선의 방향 성분들로서 표현이 가능함을 보이고, 복잡한 세선화 과정이 필요없는 윤곽선 방향 성분들의 추출 방법을 보이며, 추출된 윤곽선 방향 성분들로 한글 문자를 자동인식하는 방법을 제안하였다. 구성된 시스템은 전처리 과정이 매우 간단하며, 잡음에 민감하지도 않고 한글 문자의 윤곽선 방향 성분들을 매우 빠르게 추출하였다. 패턴이 인식 과정도 문자열 패턴매칭 방법으로 대치되어 매우 빠르고 정확하게 한글 문자를 인식해 내었다. 인식율은 92%정도 되었다.