• Title/Summary/Keyword: Exterior temperature

Search Result 170, Processing Time 0.028 seconds

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

A Study on the External Wall Heating Temperature Distribution According to Opening Upper Shading Installation and Length (개구부 상부 차양설치 및 길이에 따른 외벽 수열온도분포에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • This study used a real-scale model experiment to reproduce internal fires in residential buildings such as a multi-dwelling unit, in order to prevent damage caused by tens of thousands of fires witnessed each year and to take measures to cope with them. For experimental conditions, different opening sizes were applied to measure and analyze the heating temperature of the exterior wall. Results drawn are as follow : On top of this, the experimental conditions had whether to install shading and put a shading length differently, before measuring and analyzing the heating temperature of the exterior wall. Subsequent results were drawn as shown below. Based on the maximum temperature, the temperature was lowered as much as around 90℃ at 150mm, around 150℃ or over at 300mm and over 175℃ at 450mm. It also turned out that the difference in maximum temperature dropped by around 180℃ or over. This indicated that the shading installation works well in lowering flame temperature generated by fire spread of the exterior wall.

Relationships between depression, anxiety, 'exterior-interior pattern and cold-heat pattern' and Heart Rate Variability in healthy Subjects (건강인의 표리 한열 변증, HRV, 우울, 불안 지표의 상관성 분석)

  • Kim, Ji-Eun;Lee, Jeong-Chan;Kang, Hee-Chul;Lee, Seung-Gi;Park, Kyung-Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.482-487
    • /
    • 2006
  • The identification of the exterior-interior pattern and the cold-heat pattern is one of the most frequently used diagnostic methods in Oriental medicine. No systematic studies, however, have yet been conducted to determine the emotional and autonomic factors involved in the exterior-interior and cold-heat. In this study, the relationships between depression, anxiety, and the exterior-interior and cold-heat patterns in 100 healthy female volunteers with a mean age of 42.77 were also investigated. The autonomic nervous system's control of human temperature is a well known fact. Thus, this paper also aimed to investigate the correlationof the autonomic nervous system and patterns of the exterior-interior and cold-heat. The analysis of heart rate variability (HRV), which has become a popular non-invasive tool for assessing the activities of the autonomic nervous system, was conducted in this study. No relationship was found between the exterior-interior and cold-heat pattern scores and the degree-of-depression scores. But there was a significant difference between the exterior-interior and cold-heat pattern scores of the different anxiety types, and between those of the different anxiety levels. The depression and anxiety levels also had an effect on the HRV indices.

A Study on the External Wall Heating Temperature Distribution According to Opening Size in Building (건물의 개구부 크기에 따른 외벽 수열온도분포에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2020
  • This study used a real-scale model experiment to reproduce internal fires in residential buildings such as a multi-dwelling unit, in order to prevent damage caused by tens of thousands of fires witnessed each year and to take measures to cope with them. For experimental conditions, different opening sizes were applied to measure and analyze the heating temperature of the exterior wall. Results drawn are as following: when the experiment was conducted with opening sizes(horizontal length) each at 2,000mm, 1,600mm, and 1,400mm, the flashover occurred at 630 seconds, 505 seconds and 510 seconds, respectively. Also, the total heating time, in proportion to this, came to 815 seconds, 713 seconds and 721 seconds. The maximum heating temperature of the exterior wall by the opening size reached 282.4℃ at 2,000mm, 382.9℃ at 1,600mm, and 423.8℃ at 1,400mm. This represented that as the opening size gets smaller, the heating temperature of the exterior wall by fire spread becomes higher.

Extrusion Die Development of Interior & Exterior Parts for High Speed Train on Aluminum Alloys and Controls of Extrusion Conditions (고속전철 내·외장재용 알루미늄 합금의 압출 금형 개발 및 압출 조건의 제어)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.50-55
    • /
    • 2018
  • The important thing in extrusion technology is the design and production of molds. Appropriate design of the molds is essential for achieving the desired extrusion of molds at the same time to maximize the life of the molds and increase their efficiency. The extrusion temperature and extrusion speed are the main parameters at the time of extrusion. Different extrusion conditions should be added depending on the extrusion ratio, physical properties of the material, and type of extrusion. In this study, the extrusion process of various 6xxx series aluminum cast alloys for high speed train interior or exterior parts were investigated. The extruded die design was performed for the 6063, 6061, 6N01, 6005, 5083 and 6060 alloy profiles and an extrusion test was conducted. In addition, the extrusion conditions, such as extrusion pressure following as the billet temperature, extrusion temperature, and materials change, were analyzed. Although the 6063 aluminum alloy can be extruded at the lowest temperature and pressure, the 6061 alloy can be extruded at the highest temperature and pressure. From these results, the successful extruded products were manufactured from these established conditions.

Application of Korean Rhus Lacquer Containing Tung Oil For Exterior Coatings (동유를 함유하는 목조주택 외장용 옻칠도료의 적용)

  • Song, Byong-Min;Lee, Byoung-Hoo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.81-90
    • /
    • 2003
  • In this study, we investigated the weathering properties of Korean Rhus lacquers containing tung oil and their potential use as exterior coatings. The finished lacquers were prepared with a raw Korean Rhus lacquer or refined Korean Rhus lacquer content of 10, 20, 30 and 40 wt.% (corresponding to ratios of 10/90, 20/80, 30/70 and 40/60 by weight of Korean Rhus lacquer/tung oil, respectively). The curing temperature of the prepared lacquer increased with increasing the content of the raw Korean Rhus lacquer. This increased curing temperature is related to higher proportion of hydroxyl groups in the prepared lacquer, due to the content of the raw Korean Rhus lacquer. In accelerated weathering testing, the changes in the gloss and contact angle of the prepared lacquers showed a similar trend to that of traditional exterior oil stain. In addition, the prepared lacquers containing tung oil showed greater discoloration than traditional exterior oil stain. However, the discoloration of the prepared lacquer with a raw Korean Rhus lacquer content of 40 wt.%, and that of the prepared lacquer with refined Korean Rhus lacquer contents of 30 wt.% and 40 wt.%, showed a similar trend to that of traditional exterior oil stain. Consequentially, these prepared lacquers showed a potential for being used as exterior coatings.

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material (샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화)

  • Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

Effects of Storage Time and Temperature on the Hygienic Quality of Shell Eggs (계란의 저장·보관 조건에 따른 위생적 품질 변화)

  • Kim, Jong-Gyu;Park, Jeong-Yeong;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.438-448
    • /
    • 2015
  • Objectives: This study was performed to examine the effects of storage time and temperature and their interaction on the hygienic quality parameters of shell eggs. Methods: Eggs from 40-week-old Hy-Line Brown hens were sampled immediately after being laid and subjected to storage periods of four weeks at a refrigerated temperature ($4-5^{\circ}C$) or room temperature ($13.0-19.7^{\circ}C$). Interior/exterior qualities were examined every one week. Results: Weight loss was 2.4-3.1%. The initial specific gravity of the eggs was maintained until one week at both temperatures. Air cell size exceeded 4 mm when stored for one week at room temperature, and two weeks at refrigerated temperature. Albumen index and Haugh unit were significantly decreased at both temperatures after one week (p<0.001). Rapidly increased pH of the albumen with one week of storage was observed, regardless of temperature (p<0.001). Extension of the storage for up to four weeks at room temperature resulted in remarkable deterioration of eggshell quality and instrumental color as redness (a). Air cell size, albumen and yolk indices, Haugh unit, pH of albumen and yolk were found to be influenced by storage time and temperature (p<0.001). Interaction effects between storage time and temperature were also significant for air cell size, pH of albumen and yolk (p<0.001). Conclusion: The results suggest that air cell size and pH of albumen and yolk were important parameters influenced by storage time and temperature in shell eggs. Storage time was more influential for air cell size, and temperature for the pH of yolk. Both variables almost equally influenced the pH of albumen.

A Study on the Fire Characteristics of Aluminum Composite Panel by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 알루미늄 복합패널 외장재의 연소특성에 관한 연구)

  • Yun, Jung-Eun;Min, Se-Hong;Kim, Mi-Suck;Choi, Sung-Bok
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • In this research, exterior material combustion experiment was really tested to evaluate fire risks of aluminium complex panel which is used a lot for building exterior material. As a result, We saw fast fire spreading of aluminium complex panel. The reason is polyethylene in aluminum complex panel combust spreading fast fire flame vertically. In this test, the highest heat release rate of aluminum complex panel was 1,144 kW and surface temperature which is measured by thermocouple went up to more than $903.3^{\circ}C$, that temperature is quite a higher than $660^{\circ}C$ which is aluminum melting temperature. So, fire of aluminum complex panel can be evaluated to give us severe damage both by fast fire spreading vertically and by fire spreading through openings internally. These results from real experiment will be able to use to predict fire spreading of aluminum complex panel by comparing to modeling materialization of aluminum complex panel in the future.