• 제목/요약/키워드: Extensional relaxation time

검색결과 4건 처리시간 0.017초

점탄성유체의 Capillary Breakup 가시화 및 신장유변물성 측정 (Capillary Breakup of Viscoelastic Fluid and its Extensional Rheology)

  • 전현우;최찬혁;김병훈;박진수
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.81-87
    • /
    • 2021
  • Extensional flow of viscoelastic fluids is widely utilized in various industrial processes such as electrospinning, 3D printing and plastic injection molding. Extensional rheological properties, such as apparent viscosity and relaxation time, play an important role in the design and evaluation of the viscoelastic fluid-involved processes. In this work, we propose a lab-built capillary breakup extensional rheometer (CaBER) based on flow image processing to investigate the capillary breakup of polyethylene oxide (PEO) solution and its extensional rheological properties. We found that the apparent extensional viscosity and extensional relaxation time of the PEO solution are independent of the strike time. The proposed CaBER is expected to be applied to characterization of the extensional rheological properties of viscoelastic fluids at low cost with high precision.

저비용 수제 연신레오미터 개발 및 성능 평가 (Development and performance evaluation of a low-cost custom-made extensional rheometer)

  • 김시현;박한별;김정현
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.110-118
    • /
    • 2023
  • Characterizing the extensional rheological properties of non-Newtonian fluids is crucial in many industrial processes, such as inkjet printing, injection molding, and fiber engineering. However, educational institutions and research laboratories with budget constraints have limited access to an expensive commercial extensional rheometer. In this study, we developed a custom-made extensional rheometer using a CO2 laser cutting machine and 3D printer. Furthermore, we utilized a smartphone with a low-cost microscopic lens for achieving a high spatial resolution of images. The aqueous polyethylene-oxide (PEO) solutions and a Boger fluid were prepared to characterize their extensional properties. A transition from a visco-capillary to an elasto-capillary regime was observed clearly through the developed rheometer. The extensional relaxation time and viscosity of the aqueous PEO solutions with a zero-shear viscosity of over 300 mPa·s could be quantified in the elasto-capillary regime. The extensional properties of the solutions with relatively small zero shear viscosity could be calculated using a smartphone's slow-motion feature with increasing temporal resolution of the images.

Effect of aggregation on shear and elongational flow properties of acrylic thickeners

  • Willenbacher, N.;Matter, Y.;Gubaydullin, I.;Schaedler, V.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.109-116
    • /
    • 2008
  • The effect of intermolecular aggregation induced by hydrophobic and electrostatic interactions on shear and elongational flow properties of aqueous acrylic thickener solutions is discussed. Complex shear modulus is determined at frequencies up to $10^4$ rad/s employing oscillatory squeeze flow. Extensional flow behavior is characterized using Capillary Break-up Extensional Rheometry. Aqueous solutions of poly(acrylic acid)(PAA)/poly(vinylpyrrolidone-co-vinylimidazole) (PVP-VI) mixtures exhibit unusual rheological properties described here for the first time. Zero-shear viscosity of the mixtures increases with decreasing pH and can exceed that of the pure polymers in solution by more than two orders of magnitude. This is attributed to the formation of complexes induced by electrostatic interactions in the pH range, where both polymers are oppositely charged. PAA/PVP-VI mixtures are compared to the commercial thickener Sterocoll FD (BASF SE), which is a statistical co-polymer including (meth) acrylic acid and ethylacrylate (EA) forming aggregates in solution due to "sticky" contacts among hydrophobic EA-sequences. PAA/PVP-VI complexes are less compact and more deformable than the hydrophobic Sterocoll FD aggregates. Solutions of PAA/PVP-VI exhibit a higher zero-shear viscosity even at lower molecular weight of the aggregates, but are strongly shear-thinning in contrast to the weakly shear-thinning solutions of Sterocoll FD. The higher ratio of characteristic relaxation times in shear and elongation determined for PAA/PVP-VI compared to Sterocoll FD solutions reflects, that the charge-induced complexes provide a much stronger resistance to extensional flow than the aggregates formed by hydrophobic interactions. This is most likely due to a break-up of the latter in extensional flow, while there is no evidence for a break-up of complexes for PAA/PVP-VI mixtures. These flexible aggregates are more suitable for the stabilization of thin filaments in extensional flows.

폴리프로필렌/폴리카보네이트 블렌드의 유변학적 성질에 관한연구 (A Study on Rheological Properties of Polypropylene/Polycarbonate Blends)

  • 이재식
    • 유변학
    • /
    • 제8권2호
    • /
    • pp.119-128
    • /
    • 1996
  • 폴리프로필렌(PP)/폴리카보네이트(PC) 블렌드의 유변학적 고찰을 통해 블렌드의 수 축현상과 분상상의 변형의 연관성을 연구했다. 블렌드의 수축현상은 압축과정에서 변형됐던 분산상이 고온에서 다시 원래의 무변형 상태로 복귀하면서 나타나는 탄성변형의 풀림으로 추정되고 압출팽윤의 데이터와도 부합된다. 압출온도를 최대한 낮게 해서(25$0^{\circ}C$) 제조한 블 렌드의 경우가 최대한 높게 한 경우 (29$0^{\circ}C$)보다 수축이더 큰 사실을 설명하기 위하여 순수 PC와 PP의 전단점도비와 신장점도비를 측정 비교한 결과 두 값이 공히 높은 온도의 경우 가 오히려 작게 되어 점성에 의한 분산상의 전단변형이나 신장변형이 수축의 원인이 아니라 는 것을 알아다. 한편 법선응력과 전단응력의 데이터로부터 얻은 물질풀림시간의 비는 낮은 온도의 경우가 작아서 수축현상이 분산상의 탄성에 의한 변형이라는 것을 확인했다.

  • PDF