• Title/Summary/Keyword: Extended Edit Distance

Search Result 2, Processing Time 0.018 seconds

Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU (GPU의 공유메모리를 활용한 확장편집거리 병렬계산)

  • Kim, Youngho;Na, Joong Chae;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.213-218
    • /
    • 2015
  • Given two strings X and Y (|X|=m, |Y|=n) over an alphabet ${\Sigma}$, the extended edit distance between X and Y can be computed using dynamic programming in O(mn) time and space. Recently, a parallel algorithm that takes O(m+n) time and O(mn) space using m threads to compute the extended edit distance between X and Y was presented. In this paper, we present an improved parallel algorithm using the shared memory on GPU. The experimental results show that our parallel algorithm runs about 19~25 times faster than the previous parallel algorithm.

SVM-based Protein Name Recognition using Edit-Distance Features Boosted by Virtual Examples (가상 예제와 Edit-distance 자질을 이용한 SVM 기반의 단백질명 인식)

  • Yi, Eun-Ji;Lee, Gary-Geunbae;Park, Soo-Jun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.95-100
    • /
    • 2003
  • In this paper, we propose solutions to resolve the problem of many spelling variants and the problem of lack of annotated corpus for training, which are two among the main difficulties in named entity recognition in biomedical domain. To resolve the problem of spotting valiants, we propose a use of edit-distance as a feature for SVM. And we propose a use of virtual examples to automatically expand the annotated corpus to resolve the lack-of-corpus problem. Using virtual examples, the annotated corpus can be extended in a fast, efficient and easy way. The experimental results show that the introduction of edit-distance produces some improvements in protein name recognition performance. And the model, which is trained with the corpus expanded by virtual examples, outperforms the model trained with the original corpus. According to the proposed methods, we finally achieve the performance 75.80 in F-measure(71.89% in precision,80.15% in recall) in the experiment of protein name recognition on GENIA corpus (ver.3.0).

  • PDF