• Title/Summary/Keyword: Expressways

Search Result 127, Processing Time 0.021 seconds

Development of Incident Detection Algorithm using GPS Data (GPS 정보를 활용한 돌발상황 검지 알고리즘 개발)

  • Kong, Yong-Hyuk;Kim, Hey-Jin;Yi, Yong-Ju;Kang, Sin-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.771-782
    • /
    • 2021
  • Regular or irregular situations such as traffic accidents, damage to road facilities, maintenance or repair work, and vehicle breakdowns occur frequently on highways. It is required to provide traffic services to drivers by promptly recognizing these regular or irregular situations, various techniques have been developed for rapidly collecting data and detecting abnormal traffic conditions to solve the problem. We propose a method that can be used for verification and demonstration of unexpected situation algorithms by establishing a system and developing algorithms for detecting unexpected situations on highways. For the detection of emergencies on expressways, a system was established by defining the expressway contingency and algorithm development, and a test bed was operated to suggest a method that can be used for verification and demonstration of contingency algorithms. In this study, a system was established by defining the unexpected situation and developing an algorithm to detect the unexpected situation on the highway, and a method that can be used verifying and demonstrating unexpected situations. It is expected to secure golden time for the injured by reducing the effectiveness of secondary accidents. Also predictable accidents can be reduced in case of unexpected situations and the detection time of unpredictable accidents.

Safety Identification Lamp Visibility of Micro Cars (초소형전기차의 안전식별등 시인성에 관한 연구)

  • Baek, Seong Chae;Seo, Im Ki;Kim, Jeong Hyun;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.417-425
    • /
    • 2022
  • Interest in micro cars is growing around the world, and policy support for micro cars has been increasing in Korea. It is important to meet minimum safety standards for the operation of micro cars on roads due to concerns around micro car safety and the limited driving range of micro cars. In this study, visibility experiments that included safety identification of micro cars were conducted to try and prevent a decrease in driver reaction time. Safety identification lights were installed to the rear of a micro car, and the visibility and discomfort of the vehicle were evaluated to determine whether the micro car was safe to drive on an expressway. As a result, the installation effect of Micro car which install safety identification lamp was found when joining the point at an acceleration lane of the grade separation intersection, and that light on/off could be effective when entering an expressway. If the micro car operation plan proposed in this study is applied, the safety of micro cars on expressways can be increased by improving the visibility of micro car.

Development of Mask-RCNN Based Axle Control Violation Detection Method for Enforcement on Overload Trucks (과적 화물차 단속을 위한 Mask-RCNN기반 축조작 검지 기술 개발)

  • Park, Hyun suk;Cho, Yong sung;Kim, Young Nam;Kim, Jin pyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.57-66
    • /
    • 2022
  • The Road Management Administration is cracking down on overloaded vehicles by installing low-speed or high-speed WIMs at toll gates and main lines on expressways. However, in recent years, the act of intelligently evading the overloaded-vehicle control system of the Road Management Administration by illegally manipulating the variable axle of an overloaded truck is increasing. In this manipulation, when entering the overloaded-vehicle checkpoint, all axles of the vehicle are lowered to pass normally, and when driving on the main road, the variable axle of the vehicle is illegally lifted with the axle load exceeding 10 tons alarmingly. Therefore, this study developed a technology to detect the state of the variable axle of a truck driving on the road using roadside camera images. In particular, this technology formed the basis for cracking down on overloaded vehicles by lifting the variable axle after entering the checkpoint and linking the vehicle with the account information of the checkpoint. Fundamentally, in this study, the tires of the vehicle were recognized using the Mask RCNN algorithm, the recognized tires were virtually arranged before and after the checkpoint, and the height difference of the vehicle was measured from the arrangement to determine whether the variable axle was lifted after the vehicle left the checkpoint.

A Study of the Effect Factor of Unexpected Accidents on Expressways (고속도로 돌발상황 발생 영향 요인 연구)

  • Hey Jin Kim;Young Hyuk Kong;Dong Jun Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 2023
  • The fatality rate of secondary accidents is seven times that of general traffic accidents. If limited to highways, one in four deaths are said to occur from secondary accidents. Unexpected situations which do not give drivers time to prepare are the cause of secondary accidents. This risk results in more fatalities on highways with high driving speeds. Existing studies have conducted research on traffic accidents and on secondary traffic accidents that occur after a primary traffic accident, without considering unexpected situations that may occur on the road. Therefore, to reduce damage and casualties caused by secondary accidents, there is a need to create a safe road environment by removing the possibility of causing accidents. This study analyzes whether the day of occurrence, time of occurrence, and radius of the curve of an unexpected situation are related to the occurrence of an unexpected situation. This study was based on data of accidents that occurred in 2022 on the Cheonan-Nonsan Expressway and the Seoul-Yangyang Expressway. The radius of the curve was calculated by dividing the section of the highway into straight, clothoid, and curved sections through cluster analysis. Results of the analysis indicate that the day and time of occurrence and the curve radius are associated with unexpected situations.

Analysis of Anxiety EGG per Driving Speed on Different Design Speed Road (상이한 설계속도 도로에서의 주행속도별 불안뇌파 분석)

  • Lim, Joon Beom;Lee, Soo Beom;Joo, Sung Kab;Shin, Joon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2049-2056
    • /
    • 2013
  • With the advance in information communication, the information age has come, and desire of human being in increasing. In this circumstance, the necessity for design for building of superhighways is arising to improve the mobility in the field of transportation, too. This study was conducted to analyze if driver can drive at a design speed on a superhighway with a design speed exceeding 120km/h. For this study, it was experimented if the running speed that makes a driver feel anxious, increased, when road alignment and standard improved, due to the differences of design speed. For the experiment, 30 subjects were asked to attach brain wave analyzers to bodies. Then, this study compared powers of ${\beta}$ waves generated, when they felt anxious, driving on the roads with different design speeds, and driving virtually through a simulator. Here, Kangbyeonbukro (90km/h), Jayuro(100km/h), Joongang Expressway(110km/h), and Seohaean Expressway(120km/h) were selected as experimental sections. While drivers drove on the Kangbyeonbukro and Jayuro at a speed of 80km/h - 130km/h, on the Joongang Expressway at a speed of 100km/h - 150km/h, and Seohaean Expressway at a speed of 110km/h - 180km/h, powers of anxiety EEGs(electroencephalogram) were compared, and during the simulation driving at the same speed of 110km/h - 180km/h, powers of anxiety EEGs were compared and analyzed. Moreover, the speed when anxiety EEGs increased, was statistically verified through paired t-test. As the result, the speed when anxiety EEGs increased during the simulation driving was nearly 30km/h higher than when they increased during the actual driving on the expressways, and anxiety EEGs increased at the same speed, when subjects drove on the roads with a design speed of 90km/h and 100km/h. It means that there were small differences in road alignment and standard. However, the running speed to make drivers feel anxious was increased at both roads with a design speed of 110km/h and 120km/h. It implies that drivers can drive at a higher speed, as road alignment and standard improve.

Pollution of Pb in paddy field soil and rice plants at roadside areas;II. A study of the relationship between the content of Pb in paddy field soil and rice plants (도로변(道路邊)에 인접(隣接)한 경작지(耕作地) 토양(土壤) 및 작물체중(作物體中)의 연오염(鉛汚染);제(第)2보(報) 경작지(耕作地) 토양중(土壤中)의 연함량(鉛含量)과 작물체중(作物體中) 연함량(鉛含量)과의 관계(關係))

  • Lee, Seog-June;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.138-148
    • /
    • 1991
  • The object of this stduy was to investigate the pollution by Pb in rice plants which were cultivated in paddy field soils located near roadside areas and to discover the relationship between lead content in rice plants and soils. Samples of soils and rice plants were collected directly from paddy fields at various distances from highways and expressways located in Kyungpook province. The results obtained were as follows : 1. The average content of Pb in each part of the rice plant was 12.8ppm in roots, 4.8ppm in leaves, 4.3ppm in stems, and 0.4ppm in brown rice. 2. The content of Pb in roots showed highly positive correlation with the Pb content of the soil. 3. The Pb content in stems, leaves, and brown rice showed positive correlation with the Pb content in roots. 4. The content of organically bounded, carbonate, and sulfide Pb in soils showed highly positive correlation with the Pb content in roots. 5. The absorption ratio showed positive correlation with soil pH and negative correlation with the content of Fe in soils.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF