• 제목/요약/키워드: Expression Profiling

검색결과 410건 처리시간 0.03초

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

Comparative proteome analysis of seeds of proso millet (Panicum miliaceum) cultivars

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Park, Hyeong-Jun;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.120-120
    • /
    • 2017
  • Since the composition of proteins from the Korean cultivars of Proso millet is unknown; thereby, the present study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from the millet seeds of various cultivars, were investigated using proteomic techniques as 2D electrophoresis coupled with mass fingerprinting. The 1152 (differentially expressed) proteins were detected on 2-D gel. Among them, 26 reproducible protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Out of 26 proteins, 2 proteins were up-regulated towards all cultivars of millet, while 7 proteins were up-regulated and 13 proteins were down-regulated against only one cultivar. However, abundance in most identified protein species, associated with metabolism, transcription and transcription was significantly enhanced, while that of another protein species involved in polysaccharide metabolism, stress response and pathogenesis were severely reduced. Taken together, the results observed from the study suggest that the differential expression of proteins from the four cultivars of millet may be cultivar-specific. Taken together, a proteomic investigation of millet seeds from different cultivars, we sought to better understand the genetic variation of millet cultivars representing the future millet research, and the functional categorization of individual proteins on the basis of their molecular function.

  • PDF

당목향(唐木香)이 DSS(Dextran sulfate sodium)로 유발된 염증성 장질환 동물모델에 미치는 영향 (Effects of Auklandia Lappa on Dextran Sulfate Sodium-Induced Murine Colitis)

  • 김소연;박재우;류봉하
    • 대한한방내과학회지
    • /
    • 제34권2호
    • /
    • pp.134-146
    • /
    • 2013
  • Objectives : Auklandia Lappa (ALE) is one of the herbs used frequently to treat abdominal pain and diarrhea and reported anti-inflammatory activity by suppressing proinflammatory cytokines. This study was designed to investigate whether ALE could show protective activities on experimental colitis induced by dextran sulfate sodium (DSS) models. Methods : Colitis was induced by DSS in Balb/c mice. ALE 10, 30, 100 and 300 mg/kg were orally administered twice a day for 7 days in DSS model. Mice weight was measured daily. Scoring of clinical findings was measured every other day. Colon length, edema, fecal blood and histological damages were assessed at day 7 in DSS model. In histological analysis, we checked cryptal glands, surface epithelium, submucosa, transmural, stroma and scored degree of inflammatory cell damage by modified histological scoring. We also calculated cytokines concentrations including IFN-${\gamma}$, TNF-${\alpha}$, IL-6, IL-$1{\beta}$, IL-17, IL-23, IL-10 and TGF-${\beta}1$ by Biometric Multiplex Cytokine Profiling method. Results : ALE showed the protective effects on DSS-induced experimental colitis. ALE inhibited shortening of colon length and histological damages of colon does-dependently, but it did not inhibit weight loss. ALE also inhibited IFN-${\gamma}$ and IL-6 expression, and upregulated cytokines (IL-10, TGF-${\beta}1$) related to regulatory T cell differentiation and proliferation. Conclusions : The current results demonstrate the clinical utility of ALE in traditional medicine and indicate the possibility of potent drug development of inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Breast Cancer Molecular Subtypes and Associations with Clinicopathological Characteristics in Iranian Women, 2002-2011

  • Kadivar, Maryam;Mafi, Negar;Joulaee, Azadeh;Shamshiri, Ahmad;Hosseini, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.1881-1886
    • /
    • 2012
  • Breast cancer is a heterogeneous disease that is affected by ethnicity of patients. According to hormone receptor status and gene expression profiling, breast cancers are classified into four molecular subtypes, each showing distinct clinical behavior. Lack of sufficient data on molecular subtypes of breast cancer in Iran, prompted us to investigate the prevalence and the clinicopathological features of each subtype among Iranian women. A total of 428 women diagnosed with breast cancer from 2002 to 2011 were included and categorized into four molecular subtypes using immunohistochemistry. Prevalence of each subtype and its association with patients' demographics and tumor characteristics, such as size, grade, lymph-node involvement and vascular invasion, were investigated using Chi-square, analysis of variance and multivariate logistic regression. Luminal A was the most common molecular subtype (63.8%) followed by Luminal B (8.4%), basal-like (15.9%) and HER-2 (11.9%). Basal-like and HER-2 subtypes were mostly of higher grades while luminal A tumors were more of grade 1 (P<0.001). Vascular invasion was more prevalent in HER-2 subtype, and HER-2 positive tumors were significantly associated with vascular invasion (P=0.013). Using muti-variate analysis, tumor size greater than 5 cm and vascular invasion were significant predictors of 3 or more nodal metastases. Breast cancer was most commonly diagnosed in women around 50 years of age and the majority of patients had lymph node metastasis at the time of diagnosis. This points to the necessity for devising an efficient screening program for breast cancer in Iran. Further, prospective surveys are suggested to evaluate prognosis of different subtypes in Iranian patients.

Association of Immunohistochemically Defined Molecular Subtypes with Clinical Response to Presurgical Chemotherapy in Patients with Advanced Breast Cancer

  • Khokher, Samina;Qureshi, Muhammad Usman;Mahmood, Saqib;Nagi, Abdul Hannan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3223-3228
    • /
    • 2013
  • Gene expression profiling (GEP) has identified several molecular subtypes of breast cancer, with different clinico-pathologic features and exhibiting different responses to chemotherapy. However, GEP is expensive and not available in the developing countries where the majority of patients present at advanced stage. The St Gallen Consensus in 2011 proposed use of a simplified, four immunohistochemical (IHC) biomarker panel (ER, PR, HER2, Ki67/Tumor Grade) for molecular classification. The present study was conducted in 75 newly diagnosed patients of breast cancer with large (>5cm) tumors to evaluate the association of IHC surrogate molecular subtype with the clinical response to presurgical chemotherapy, evaluated by the WHO criteria, 3 weeks after the third cycle of 5 flourouracil, adriamycin, cyclophosphamide (FAC regimen). The subtypes of luminal, basal-like and HER2 enriched were found to account for 36.0 % (27/75), 34.7 % (26/75) and 29.3% (22/75) of patients respectively. Ten were luminal A and 14 luminal B (8 HER2 negative and 6HER2 positive). The triple negative breast cancer (TNBC) was most sensitive to chemotherapy with 19% achieving clinical-complete-response (cCR) followed by HER2 enriched (2/22 (9%) cCR), luminal B (1/6 (7%) cCR) and luminal A (0/10 (0%) cCR). Heterogeneity was observed within each subgroup, being most marked in the TNBC although the most responding tumors, 8% developing clinical-progressive-disease. The study supports association of molecular subtypes with response to chemotherapy in patients with advanced breast cancer and the existence of further heterogeneity within subtypes.

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa

  • Kim, In-Woo;Markkandan, Kesavan;Lee, Joon Ha;Subramaniyam, Sathiyamoorthy;Yoo, Seungil;Park, Junhyung;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1863-1870
    • /
    • 2016
  • Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.