• Title/Summary/Keyword: Exposure to airborne fiber

Search Result 23, Processing Time 0.028 seconds

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

Determination of Airborne Fiber Size and Concentration in RCF Manufacturing and Processing Factories (세라믹 섬유 제조 및 가공 공정에서 발생된 공기중 섬유의 농도 및 크기 분포)

  • 신용철
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • Various man-made mineral fibers(MMMF) including refractory ceramic fiber(RCF) have been used widely in industries as insulation materials. The effect of fibrous dust on human health depends on fiber size, concentration (exposure level), and durability in biological system. Therefore, these parameters should be determined to evaluate accurately the potential risk of fibers on human health. The purpose of this study was to characterize the size of airborne fiber and the workers' exposure to airborne fibers in refractory ceramic fiber manufacturing and processing factories. Airborne fibers were collected on 25-mm mixed cellulose ester membrane filters at personal breathing zones, and analyzed by A and B counting rules of the National Institute for Occupational Safety and Health(NIOSH) Method # 7400. The average ratios of the fiber density by B rule to the fiber density by A rule was 0.84. This result indicates that the proportion of respirable fibers (<3 ${\mu}{\textrm}{m}$ diameter) in air samples was high. The average diameter and length of airborne fibers were 1.05${\mu}{\textrm}{m}$ and 35${\mu}{\textrm}{m}$, respectively. The average fiber concentrations (GM) of all personal samples was 0.26f/cc, and the average concentration was highest at blanket cutting and packing processes. The fifty seven percent of personal air samples was exceeded the proposed American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value(TLV), i.e. 0.2 f/cc. It was concluded that the RCF industrial workers had the higher potential health risk due to small fiber diameter, long fiber length, and high exposure level to the airborne fibers.

  • PDF

Occupational Exposure to Airborne Asbestos Fibers in Serpentine Quarries and a Steel Mill (사문석 채석장과 제철소 내 사문석 취급 근로자의 공기 중 석면 노출 평가)

  • Kwon, Jiwoon;Seo, Hoe-Kyeong;Kim, Kab Bae;Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Objectives: Asbestos contents of crushed serpentine rocks and airborne fiber concentrations of workers were determined at two serpentine quarries and a steel mill. Methods: Bulk samples of uncrushed and crushed serpentine rocks were collected and analyzed by PLM and TEM. Airborne asbestos samples were collected from the breathing zone of workers and the vicinity of working area and analyzed by PCM and TEM. Results: Chrysotile was identified with antigorite, lizardite and non-asbestiform actinolite in bulk samples. The arithmetic means of chrysotile contents in crushed serpentines were 0.11, 0.01, 0.42%(W/W) by quarry A, quarry B and a steel mill, respectively. The asbestos concentrations of all personal samples were less than 0.1 f/cc which is the permissible exposure limit of workers in Korea. The arithmetic means of airborne asbestos concentrations were 0.017 f/cc and 0.009 f/cc in personal samples collected from two serpentine quarries. The asbestos concentrations of all personal samples collected from a steel mill were less than LODs by PCM analysis but asbestos was detected in area samples by TEM. By the job tasks of serpentine quarries, crusher/separator operation generated the highest exposure to airborne asbestos. Conclusions: Although chrysotile contents in crushed serpentines of quarries were less the permissible level, the highest exposure of workers in serpentine quarries reached up to 76% of the permissible level of airborne asbestos. There were also possibilities of occupational exposure to airborne asbestos in a steel mill. The present exposure study should encourage further survey and occupational control of quarries producing serpentine or other types of asbestos-bearing rocks.

Airborne Asbestos Fiber Concentration in Korean Asbestos-Related Industry from 1994 to 2006 (1994년부터 2006년까지 한국 석면취급 사업장의 석면 노출농도)

  • Yi, Gwangyong;Shin, Yong Chul;Yoon, Chungsik;Park, Dooyong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.123-136
    • /
    • 2013
  • Objectives: This paper was prepapred to report airborne asbestos fiber concentrations in asbestos textile, brake-lining, commutator, and building materials manufacturing industries, and some other asbestos related industries in Korea from 1994 to 2006. Methods: Airborne asbestos data that have been sampled and analyzed in the above industries during 1994-2006 were collected. These data were reviewed to scrutinize the qualified data based on the records such as sampling and analyzed method and quality control procedures. All asbestos data were generated using the National Institute for Occupational Safety & Health (NIOSH) Method 7400. Results: Average concentration of asbestos fiber was 2.14 fibers/cc(0.02-15.6 fibers/cc) in the asbestos textile industry, 0.26 fibers/cc(0.01-1.01 fibers/cc) in the building-materials industry, 0.15 fibers/cc(0.01-0.93 fibers/cc) in the brake-lining manufacturing industry, and 0.14 fibers/cc(0.03-1.36 fibers/cc) in the commutator producing industry. For these industries, the percentage of samples of which asbestos fiber concentrations above the limit of exposure(0.1 fibers/cc) was 97.6% in the asbestos textile industry, 62.3% in the building-materials industry, 53.5% in the brake-lining manufacturing industry, and 34.3% in the commutator producing industry. Asbestos fiber concentration was below the limit of exposure in the gasket producing, petrochemistry, musical instrument producing industries, and the brake-lining exchange operations. Conclusions: Airborne asbestos fiber level in the asbestos textile, brake-lining producing, commutator and building-material producing industries was above the limit of exposure, but in the gasket producing, petrochemistry, musical instrument producing industries and the brake-lining exchange operations were below the limit of exposure.

Exposure Assessment to Asbestos and Diesel Engine Exhaust Particulate Matter in Urban Bus Garage (버스 정비 작업자에 대한 석면 및 디젤 엔진 배출물질 노출 평가)

  • Lee, Naroo;Yi, Gwangyong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.219-224
    • /
    • 2016
  • Objectives: Lung cancer occurred with worker working in an urban bus garage. A survey was conducted to investigate whether lung cancer had causal relationship with work. Exposure to asbestos and diesel engine exhaust were suspected. Methods: Airborne asbestos was sampled on membrane filter and analyzed using phase-contrast microscopy. Airborne diesel exhaust was sampled using quartz filter and analyzed with thermal-optical analyzer. Polynuclear aromatic hydrocarbons was sampled using PTFE filter and XAD-2 tube and analyzed with gas chromatography-mass selective detector. Results: Airborne asbestos concentration was under 0.01 fiber/cc. Worker who warmed up an engine of urban bus for 2 hours was exposed to elemental carbon concentration, $15.5{\mu}g/m^3$. Only naphtalene among polynuclear aromatic hydrocarbons was detected. Conclusions: It was difficult to conclude about worker exposure to asbestos because working hour related asbestos was too short. In reviewing papers, the exposure to asbestos over 0.01 fiber/cc during exchange brake lining was found. It was identified that worker's occupational exposure to diesel exhaust based on elemental carbon was higher than the other occupational exposure to diesel exhaust.

Asbestos Content in Friable Sprayed-on Surface Material and Airborne Fiber Concentrations in Commercial Buildings (대형건물내 비고형 석면함유 건축자재에 의한 기중 석면오염 및 관리실태)

  • Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.137-146
    • /
    • 1995
  • Twenty(20) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceilings were investigated for asbestos content in bulk material by polarized light microscopy and for airborne fiber concentrations in buildings by phase contrast microscopy. In addition, such building-related variables as building age, numbers of traffic, airflow, surface conditions of the ceiling, temperature, and humidity were studied for any correlation with airborne fiber concentrations. The results were as follows: 1. Chrysotile asbestos was found in two bulk samples with 3-5% content and with <1%in one sample out of total 20 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The ceiling surfaces were very friable in 16 buildings and were relatively hard in 4 buildings. The friability of the surface material was dependent upon the type and the amount of binder that had been mixed with the sprayed-on surface material. 3. Airborne fiber concentrations were log-normally distributed and the geometric mean(geometric standard deviation) fiber concentrations in the underground parking lots, inside buildings, and outdoor ambient air were 0.0063(1.97)f/cc, 0.0068(2.29)f/cc, and 0.0033(2.36)f/cc, respectively. 4. No significant relationship of airborne fiber concentrations and all building-related variables studied except humidity was found. The results of this study suggest that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos. Since most of the ceiling surfaces surveyed were very friable and poorly maintained and the airborne fiber concentrations were relatively high, there is a possibility of asbestos fiber contamination in these buildings, particularly at those buildings with asbestos-contaminated surface material. Since poorly maintained surface conditions were thought to be a source of high airborne fiber concentrations, there is a urgent need of a systematic operation and maintenance program. Further study of non-occupational asbestos exposure in general population utilizing advanced analytical technique such as transmission electron microscopy is highly recommended.

  • PDF

Estimation of Total Dust Concentration Complying with the TLV of Airborne Man-made Mineral Fibers by Regression Analysis (회귀분석에 의한 공기중 인조광물 섬유 허용기준과 부합하는 총분진 농도의 추정)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.158-166
    • /
    • 1999
  • The purpose of this study was to investigate the correlation between airborne total dust and man-made mineral fibers (MMMF), and to estimate total dust concentration to maintain below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV$^{(R)}$) for the MMMF. The regression coefficients between airborne total dust concentrations and fiber concentrations determined in the industries producing glass fibers, rock wool. refractory ceramic and continuous filament glass fibers products were 0.41, 0.42, 0.20 and 0.19, respectively. The size characteristics of fibers as well as the amounts of contaminated non-fibrous dusts could affect the correlation intensities. When total dust and fiber exposure data were compared with the occupational exposure limits, there was a large gap between two evaluation results. The regression coefficient between total dust and fiber data was increased ($r^2=0.88$) in the process of insulation installation generating in the higher levels of glass or rock wool fibers. In this case, an estimated total dust concentration of glass wool or rock wool fibers complying with the ACGIH TLV (1 f/cc) was $1.7mg/m^3$. In conclusion, the total dust and fibers concentrations was highly correlated at the higher exposure levels so that total dust-monitoring data could be used to control simply and economically and to estimate worker's exposure to fibers.

  • PDF

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Workers' Exposure to Airborne Fibers in the Man-made Mineral Fibers Producing and Using Industries (인조광물섬유 제품 제조 및 취급 근로자의 공기중 섬유 노출 평가 및 노동부 노출기준 고찰)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 2005
  • In this study, occupational exposures to man-made mineral fibers (MMMFs) including glass wool, rock wool, and continuous glass filament fibers were determined and evaluated on the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). A total of 171 personal samples collected from 4 glass wool fiber, 2 rock wool fibers, 4 continuous filament glass fiber products manufacturing and a glass fiber and rock wool insulations using industries, and determined respirable fibers concentrations using the National Institute for Occupational Safety and Health (NIOSH) Method 7400, "B counting rule. The fiber concentrations of samples from workers installing thermal insulations in a MMMF using industry showed the highest value: geometric mean (GM) = 0.73 f/cc and maximum = 2.9 f/cc, 70% of them were above the TLV, 1 f/cc. Workers' exposure level (GM= 0.032 f/cc) in the rock wool manufacturing industries was significantly higher than those of glass wool (GM=0.012 f/cc) and continuous filament glass fibers (GM=0.010 f/cc) manufacturing industries (p<0.01). No samples were more than the TLV in the MMMF manufacturing industries. There was a significant difference among companies in airborne fiber levels.

The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials (건축재료에서 발생되는 석면입자의 특성 연구)

  • 유성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF