• Title/Summary/Keyword: Exposure limit distance

Search Result 20, Processing Time 0.022 seconds

Exposure-Limit Distance as a Safety-Indicating Parameter of a High-Intensity Flash Source (고광도 섬광의 안전지표로서 노출제한거리)

  • Park, Seung-Man;Kim, Sang-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • A systematic understanding of the effects of high-intensity flash sources on the human eye is strongly needed, not only for proper use of the sources, but for human eye health. In this study, the exposure-limit distance (ELD), indicating the minimal safe distance in case of seeing by chance a high-intensity flash, is proposed. The optical procedures to determine the ELD of a high-intensity flash are clarified, and the dependence of ELD on its parameters such as luminous intensity, duration, and radius of a flash are thoroughly investigated. From this investigation it is obvious that, while being weakly dependent on duration, the ELD is nearly proportional to the luminous intensity and the radius of a flash. The proposed ELD as an intuitive safety-indicating parameter is more useful and intuitive than the other characteristic parameters of a high-intensity flash. The ELD is expected to be an essential parameter as a safety indicator, to characterize the performance of a high-intensity flash and to promote the safety of the human eye.

A Study on the Extremely Low Frequency Magnetic Fields Exposure Characteristics of Workers in LCD Manufacturing Process (LCD 제조공정 종사근로자의 극저주파자기장 노출특성 연구)

  • Kim, JoonBeom;Kang, Joon Hyuk;Chung, Eun-Kyo;Jung, Kihyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.10-20
    • /
    • 2022
  • Objectives: The aim of this study is to evaluate exposure levels of the extremely low frequency magnetic fields(ELF-MF) radiated from various electric facilities in Liquid Crystal Display(LCD) manufacturing processes. Methods: This study measured the exposure levels of personal and local ELF-MF for the electronic facilities installed in two LCD manufacturing companies. Samplers were installed around workers' waist during working hours to identify personal exposure levels, and direct reading equipment were located at 3 cm, 10 cm, and 30 cm away from the surface of the electronic facilities to measure local exposure levels. Average and maximum(ceiling) values were calculated for personal and local exposure levels. Results: Average and maximum of personal exposure levels for each worker were 0.56(mean) ± 0.02(SE) µT and 6.31 ± 0.75 µT, respectively. Statistical analyses of the study found that maximum of the personal exposure levels for engineers was significantly higher than that for operators since engineers spend more time near the electronic facilities for repairing. The range of maximum personal exposure levels was 0.50 ~ 43.50 µT and its highest level was equivalent to 4.35 % of ACGIH(American Conference of Governmental Industrial Hygienists) exposure limit value(1 mT). Maximum of local exposure levels was 8.18 ± 0.52 µT and the electronic facilities with higher exposure levels were roof rail and electric panel, which were not related to direct manufacturing. The range of maximum local exposure levels was 0.60 ~ 287.20 µT and its highest level was equivalent to 28.7 % of the ACGIH exposure limit value. Lastly, the local exposure levels significantly decreased as the measurement distance from the electronic facilities increased. Conclusions: Maximum of personal and local exposure levels did not exceed the exposure limit value of ACGIH. However, it is recommended to keep the workers as far as possible from the sources of ELF-MF.

Radiological safety assessment of lead shielded spent resin treatment facility with the treatment capacity of 1 ton/day

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.273-281
    • /
    • 2021
  • The radiological safety of the spent resin treatment facility with a14C treatment capacity of 1 ton/day was evaluated in terms of the external and internal exposure of worker according to operation scenario. In terms of external dose, the annual dose for close work for 1 h/day at a distance of more than 1 m (19.8 mSv) satisfied the annual dose limit. For 8 h of close work per day, the annual dose exceeded the dose limit. For remote work of 2000 h/year, the annual dose was 14.4 mSv. Lead shielding was considered to reduce exposure dose, and the highest annual dose during close work for 1 h/day corresponded to 6.75 mSv. For close work of 2000 h/year and lead thickness exceeding 1.5 cm, the highest value of annual dose was derived as 13.2 mSv. In terms of internal exposure, the initial year dose was estimated to be 1.14E+03 mSv when conservatively 100% of the nuclides were assumed to leak. The allowable outflow rate was derived as 7.77E-02% and 2.00E-01% for the average limit of 20 mSv and the maximum limit of 50 mSv, respectively, where the annual replacement of the worker was required for 50 mSv.

Radiation exposure to the eyes and thyroid during C-arm fluoroscopy-guided cervical epidural injections is far below the safety limit

  • Choi, Eun Joo;Go, Gwangcheol;Han, Woong Ki;Lee, Pyung-Bok
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2020
  • Background: The aim of this study was to evaluate radiation exposure to the eye and thyroid in pain physicians during the fluoroscopy-guided cervical epidural block (CEB). Methods: Two pain physicians (a fellow and a professor) who regularly performed C-arm fluoroscopy-guided CEBs were included. Seven dosimeters were used to measure radiation exposure, five of which were placed on the physician (forehead, inside and outside of the thyroid protector, and inside and outside of the lead apron) and two were used as controls. Patient age, sex, height, and weight were noted, as were radiation exposure time, absorbed radiation dose, and distance from the X-ray field center to the physician. Results: One hundred CEB procedures using C-arm fluoroscopy were performed on comparable patients. Only the distance from the X-ray field center to the physician was significantly different between the two physicians (fellow: 37.5 ± 2.1 cm, professor: 41.2 ± 3.6 cm, P = 0.03). The use of lead-based protection effectively decreased the absorbed radiation dose by up to 35%. Conclusions: Although there was no difference in radiation exposure between the professor and the fellow, there was a difference in the distance from the X-ray field during the CEBs. Further, radiation exposure can be minimized if proper protection (thyroid protector, leaded apron, and eyewear) is used, even if the distance between the X-ray beam and the pain physician is small. Damage from frequent, low-dose radiation exposure is not yet fully understood. Therefore, safety measures, including lead-based protection, should always be enforced.

A Study on the Guarantee of Learning Rights of Radiology Students in Nuclear Safety Act (원자력안전법에 대한 방사선학과 학생들의 학습권 보장에 관한 연구)

  • Lee, Bo-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.159-164
    • /
    • 2022
  • The study developed a radiation dose measurement program in the radiology laboratory to measure how much exposure the students are exposed to during the radiology class, to request for the improvement and the revision of the current Nuclear Safety Act. The experimental program is shown in the following figure, and experiments were conducted to determine the degree of radiation exposure in the control room with a lead gown at a distance of 1 m, 2 m, and 1 m, and in a control room with a radiographic lead glass wall. The duration of the experiment was 3 months from April to June, when radiation imaging practice classes were conducted, and 128 hours of imaging practice per month were conducted. In order to find out the dose of radiation dose during radiology imaging practice class, the experiment was carried out from April to June for 3 months, and according to the program, the results of exposure dose were 0.34 mSv at 1 m distance, 0.01 mSv at shielding of lead gown at 1 m distance, 0.16 mSv at 2 m distance, and 0.01 mSv at control room with radiation lead glass wall. The exposure dose from the test results was much below the annual general public limit dose of 1 mSv. The restriction on the operation of the radiation equipment in the practice of the students is a regulation that infringes the right of students to learn, and amendments or exemptions of Nuclear Safety Act should be enacted to ensure that it does not violate the fundamental right to learn for students in radiology.

Prediction of the Noise Levels for a Newly-founded Petrochemical Plant (신설 석유화학 공장의 소음도 예측)

  • 윤세철;이해경
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.135-142
    • /
    • 1996
  • Prolonged in-plant personnel exposure to high noise levels results in permant hearing damage. There are no way to correct this hearing damage by treatment or use of hearing aids. Therefore, every employer is responsible for providing a workplace free of such hazards as excessive noise. This study was carried out to evalute and predict a given noise environment based on specific limit as the noise guarantee for a newly-founded petrochemical plant. The maximum total sound level should not exceed 85dBA in the work area, except where the area is defined as a restricted area and 70dBA at the plant boundary. Prediction of the noise levels within the plant area for a newly-founded petrochemical plant was achieved by dividing all plant area into 20m$\times$20m regular grid spaces and noise level inside the area or unit that in-plant personel exposure to high noise levels was estimated computed into 5m$\times$5m regular grid spaces. The noise level at the grid point that was propagated from each of the noise sources(equipments) computed using the methematical formula was defined as follows : $SPL_2$=$SPL_1-20log{\frac{r_2}{r_1}}$(dB) where $SPL_1$ =sound pressure level at distance $r_1$ from the source $SPL_2$=sound pressure level at distance $r_2$ from the source As a result, the equipments exceeded noise limit or irritaring noise levels were identified on the specific grid coordinates. As for equipments in the area that show high noise levels, appropriate counter-measures for noise control (by barriers, enclosure, silencers, or the change of equipments, for example) should be reviewed. Methods for identifying sources of noise applied in this study should be the model for prediction of the noise levels for any newly-founded plant.

  • PDF

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF

A Study on Control of Fume for Various Parameters in CO2 Welding (CO2 용접에서 용접변수의 변화에 따른 용접흄 제어방법에 관한 연구)

  • Oh, Kwang-Joong;Kim, Hyun-Soo;Shon, Byung-Hyun;Jee, Hae-Sung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.76-87
    • /
    • 1998
  • The concentration of welding fume was measured by 221 welders themselves in chassis frame workplace of the manufactory from February, 1, 1996 to May, 31, 1997. Welding parameters were the welding current and the distance between helmet and arc. Those two optimum conditions were proposed by excess probability analysis using logistic regression, so the best position in the workplace was proposed considering two factors to control the welding fume. The results are as followings; 1) The excess proability of welding fume TLV was over 99% in above 260 Amperes of welding current and also in below 30cm of distanced between helmet and arc. 2) The equation from logistic regression analysis using SPSS/PC+5.02 had the welding current as a independent variable and the excess of welding fume TLV as a dependent variable (p<0.05). Logit(welding fume TLV) = 0.1296 ${\times}$ wlding currnet - 28.8750 3) The equation from logistic regression analysis using SPSS/PC+5.02 had the distance between helmet and arc as a independent variable and the excess of welding fume threshold limit value a, a dependent variable (p<0.05). Logit (welding fume TLV) = -0.6809 ${\times}$ distance between helmet and arc +25.1665 4) Considering both cases or 2) and 3). the result equation is following. (p<0.05). Logit (welding fume TLV) = 0.1346 ${\times}$ welding current -0.3859 ${\times}$ distance between helmet and arc -15.7382 5) The excess probability of welding fume threshold limit value was 100% in above 240 Ampere of welding current. Thus, below 220 Ampere can be suggested to reduce the 40% number of welders who have a excess welding fume threshold limit value. 6) The excess probability of welding fume TLV was 100% in below 34cm of distance between helmet and arc. Thus, over 38cm can be suggested to reduce the 33% number of welders who have a excess welding fume TLV. 7) Considering both 5) and 6) cases, first of all, the best welding current can be 200 Ampere to have a below 15% of welding fume excess probability for the welders who works in distance of 34-37cm. Secondly, to have a below 30% excess probability of welding fume TLV, the working distance must be over 38cm in 220 Ampere and 32cm in 200 Ampere. 8) To reduce the average exposure concentration of welding fume ($8.21{\pm}5.83mg/m^3$), the movable local exhaust system equipped with flexible hoods can be used.

  • PDF

Evaluation of Caregivers' Exposed Dose and Patients' External Dose Rate for Radioactive Iodine (I-131) Therapy Administration in Isolated Ward (방사성요오드(I-131) 격리병실 치료 관리를 위한 환자의 체외방사선량률과 상주 보호자의 피폭선량평가)

  • Kang, Seok-Jin;Lee, Doo-Hyeon;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In this study, the radiation dose rate was measured by time and distance and evaluated whether radiation dose rate was suitable for domestic and international discharge criteria. In addition, the radiation dose emitted from the patient was measured with a glass dosimeter to evaluate the exposure dose if the caregiver stays in the isolated ward by placing a humanoid phantom instead of the caregiver at a distance of 1 m from the patient, on the second day of treatment. After 23 hours of isolation, the radiation dose rates at a distance of 1 m were 20.54 ± 6.21 µSv/h at 2.96 GBq administration and 27.94 ± 12.33 µSv/h at 3.70 GBq administration. The radiation dose rates at a distance of 1 m were 25.90 ± 2.21 µSv/h when 2.96 GBq was administered and 34.22 ± 10.06 µSv/h when 3.70 GBq was administered after 18 hours of isolation. However, if the isolation period is short may cause unnecessary radiation exposure to the third person. The reading of the attached dosimeter from the morning of the second day of treatment until removal was 0.01 to 0.95 mSv, which is a surface dose determined by the International Commission on Radiation Units and Measurements. And the depth dose was 0.01 to 0.99 mSv. On the second day of treatment, even if the patient caregivers stayed in the isolation ward, the exposure dose of the patient family did not exceed the effective dose limit of 5 mSv recommended by the ICRP and NCRP.

Variation Analysis of Distance and Exposure Dose in Radiation Control Area and Monitoring Area according to the Thickness of Radiation Protection Tool Using the Calculation Model: Non-Destructive Test Field (계산 모델을 활용한 방사선방어용 도구 두께에 따른 방사선관리구역 및 감시구역의 거리 및 피폭선량 변화 분석 : 방사선투과검사 분야 중심으로)

  • Gwon, Da Yeong;Park, Chan-hee;Kim, Hye Jin;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, interest in radiation protection is increasing because of the occurrence of accidents related to exposure dose. So, the nuclear safety act provides to install the shields to avoid exceeding the dose limit. In particular, when the worker conducts the non-destructive testing (NDT) without the fixed shielding structure, we should monitor the access to the workplace based on a constant dose rate. However, when we apply for permits for NDT work in these work environments, the consideration factors to the estimation of the distance and exposure dose are not legally specified. Therefore, we developed the excel model that automatically calculates the distance, exposure dose, and cost if we input the factors. We applied the assumption data to this model. As a result of the application, the distance change rate was low when the thickness of the lead blanket and collimator is above 25 mm, 21.5 mm, respectively. However, we didn't consider the scattering and build-up factor. And, we assumed the shape of the lead blanket and collimator. Therefore, if we make up for these limitations and use the actual data, we expect that we can build a database on the distance and exposure dose.