• Title/Summary/Keyword: Exposure fusion

Search Result 117, Processing Time 0.027 seconds

The Study on Scattered Radiation Effects According to Acquisition of X-ray Imaging using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 의료영상 획득 시 산란선 발생 영향 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Yang, Seung-Woo;Heo, Ye-Ji;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • The medical imaging technique images the contrast formed based on the difference in absorption coefficient of X-rays which changes according to the composition and thickness of the object. At this time, not only primary rays entering the image detector but also scattered rays greatly affect the image quality. Therefore, in this paper, Forward scattering rate and Scattered to primary ratio analysis were performed through Monte Carlo simulation in order to consider influence of scattered ray generated according to object thickness and radiation exposure area change on image quality. In the study, the Forward scattering rate corresponding to the thickness of the object was analyzed at a maximum of 15.3%p and the Scattered to primary ratio was analyzed at 2.00 to 4.54, but it was analyzed as maintaining a constant value for radiation exposure area change. Based on these results, the thickness of the object should be considered as a factor influencing the quality of the image, but radiation exposure area verified that it is a factor that does not affect the image quality. We believe that the results of this research can be utilized as basic information of scattered radiation to improve image quality.

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect (2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장)

  • Kim, Tae-Un;Moon, Jong-Ha;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria;Victoria, Maximo;Hoffelner, Wolfgang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

  • Choi, Jonghye;Kim, Hyejin;Choi, Jinhee;Oh, Seung Min;Park, Jeonggue;Park, Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.4.1-4.10
    • /
    • 2014
  • Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models ($KeraSkin^{TM}$) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-$1{\alpha}$ release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are 'non corrosive' and 'non-irritant' to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test.

The Status of 3D Printing Industry and Researches on Exposure to Hazards When Using Metal Materials (3D프린팅 산업 및 금속소재 사용시 유해인자 노출 연구 현황)

  • Hae Dong Park;Leejun HUH
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We attempted to provide an overview of the laws and current state of the 3D printing industry in South Korea and around the world, using the annual industry surveys and the Wohler report. Additionally, we reviewed articles relating to the potential exposure to hazards associated with 3D printing using metal materials. In South Korea, there were 406 3D printing-related businesses, employing 2,365 workers, and the market size was estimated at 455.9 billion won in 2021. Globally, the average growth rate of the 3D printing industry market over the past 10 years was 27.4%, and the market size was estimated at $11.8 billion in 2019. The United States had the highest cumulative installation ratio of industrial 3D printers, followed by China, Japan, Germany, and South Korea. A total of 6,168 patents related to 3D printing were registered in the US between 2010 and 2019. Harmful factors during metal 3D printing was mainly evaluated in the powder bed fusion and direct energy deposition printing types, and there is a case of material extrusion type with metal additive filaments. The number, mass, size distribution, and chemical composition of particles were mainly evaluated. Particle concentration increases during the opening of the chamber or post-processing. However, operating the 3D printer in a ventilated chamber can reduce particle concentration to the background level. In order to have a safe and healthy environment for 3D printing, it is necessary to accumulate and apply knowledge through various studies.

Research on the Reduction of Exposure Dose of a Patient Having a PET/CT Exam (PET/CT 검사 환자의 피폭선량 경감을 위한 연구)

  • Kim, Bong-Su;Pyo, Sung-Jai;Cho, Yong-Gyi;Shin, Chai-Ho;Cho, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2009
  • Purpose: As the number of patients has increased since the installation of a PET/CT, we are now examining about 2500-3000 annually. We have realized that if we properly adjust a pitch under the same condition of a CT during a PET/CT exam, radiation quantity that reaches the patient can change. In order to reduce the exposure dose of a patient, the research examines a method of reducing the exposure dose of a patient by controlling the pitch during a PET/CT exam, viewing whether the adjustment of the pitch influences CT image and PET SUV. Methods: The equipment used is a Biograph Positron Emission Tomography (PET) Scanner (CT type: TRCT-240-130 (WCT-240-130)) of Siemens company. For the evaluation of exposure dose of a patient, we measured radiation quantities using a PTW-DIADOS 11003/1383, which is a CT radiation measurement instrument used by Siemens. We measured and analyzed the space resolutions of CT images caused by the change of pitches using an AAPM Standard Phantom in order to see how the adjustment of pitches influenced the CT images. In addition, in order to obtain SUVs caused by each change of pitches using a PET source made with a solid radioactive cylinder phantom, we confirmed whether the SUVs changed in the PET/CT images by calculating the SUVs of the fusion images caused by the change of pitches after obtaining CT and PET images and finishing the test. Results: 2slice CT scanner showed that radiation quantities largely dropped when pitches ranged from 0.7 to 1.3 and that the reduction of radiation quantities were smaller when pitches ranged from 1.5 to 1.9. That is, we found that the bigger pitch values are the smaller the radiation quantities of a patient are. Moreover, we realized that there is no change of SUVs caused by the increase of pitches and that pitch values do not influence PET SUVs and the quality of CT images. It is judged that using 1.5 as a pitch value contributes to the reduction of exposure dose of a patient as long as there is no problem in the quality of an image. Conclusions: When seeing the result of the research, hospital using a PET/CT should make an effort to reduce the exposure dose of a patient seeking pitch values appropriate for their hospital within the range in which there is no image distortion and PET SUVs are not influenced from pitches. We think that the research can apply to all multi-detectors having a CT scanner and that such a research will be needed for other equipments in the future.

  • PDF

Patch based Multi-Exposure Image Fusion using Gamma Transformation (감마 변환을 이용한 패치 기반의 다중 노출 영상 융합)

  • Kim, Jihwan;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.59-62
    • /
    • 2017
  • 본 논문에서는 평균 밝기 부분에 가중치 맵으로써 감마 변환에 기반한 선형 결합을 제안하고자 한다. 기존의 패치를 기반으로 한 가중치 맵은 평균 밝기 부분에서 영상 내 밝기 값이 한쪽으로 치우쳐 영상의 밝은 부분이 과포화 상태가 되어 세부 정보가 손실되는 단점이 있다. 이에 본 논문에서는 전역적 및 지역적 영상의 평균 밝기 값을 이용하여 감마 변환된 값을 선형 결합 시켜줌으로써 영역 내 세부 정보를 보존시키고 주관적 화질을 향상시켰다. 실험을 통해 결과를 분석하고 성능을 비교하여 기존 알고리듬에 비해 제안한 알고리듬이 우수함을 증명하였다.

  • PDF

Vacuum properties of CFC (carbon fiber composits) (탄소섬유복합재(CFC)의 진공특성)

  • 인상렬;박미영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.497-506
    • /
    • 1999
  • Carbon has been widely used for the material of plasma facing components in fusion experiment devices like a tokamak, because carbon has good thermal and mechanical properties. However carbon gas a relatively high ougassing rate. Therefore the amount and the surface area of the carbon material used in the vessel will determine the background pressure of the vacuum vessel. In this experiment influences of carbon on the vacuum performance was investigated by measuring chamber pressure, ougassing rater and gas spectrum of carbon fiber composite (CFC) samples in various situations, pumping out, chamber baking, carbon heating (250~$500^{\circ}C$), exposure to atmosphere for maintenance of in-vessel components, etc., occurring routinely during tokamak operations.

  • PDF

토양 오염물질의 독성 탐지를 위해 유전자 재조합 발광 박테리아를 이용한 환경 바이오 센서의 개발과 응용

  • Jang, Seok-Tae;Lee, Hyeon-Ju;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.212-215
    • /
    • 2000
  • Recombinant bioluminescent bacterial strains that use specific promoters fused to the bioluminescence genes (lux genes) have been applied in environmental monitoring. Advantages of using recombinant bioluminescent bacteria as blosensing cells include rapid responses, low costs, and improved reproducibility. In this study, a recombinant Escherichia coli, GC2, containing a lac::luxCDABE fusion immobilized with solid agar media and glass beads was used to estimate the effect of this soil flushing technique. This bacterium constitutively emits light under normal conditions (no toxic chemicals). When growth and metabolism of these bioluminescent bacteria is inhibited by their exposure to toxic chemicals, the bioluminescence (BL) is reduced. A biosurfactant, rhamnolipids, was used to extract phenanthrene from the soil after flushing.

  • PDF

SONOGRAPHIC CHANGE OF MANDIBULAR DISTRACTION OSTEOGENESIS (하악골 신장술의 초음파적 변화)

  • Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.297-306
    • /
    • 2007
  • Distraction osteogenesis was pioneered by Ilizarov in the treatment of injured extremities. Its subsequent application to Oral and Maxillofacial Surgery has opened a new chapter in the treatment of facial deformity. Careful monitoring of the period of distraction and consolidation of the callus is important and has been well described. Complications, such as infection, haematoma and premature ossification, are difficult to diagnose and can compromise the outcome after the surgery. Too slow rate of distraction results in premature fusion of cortices and too rapid information of bone 'cyst' within the callus distraction. I experienced 2 patients of congenital unilateral mandibular hypoplasia, so called Hemifacial Microsomia. After distraction surgery, I evaluated callus formation of mandibular distraction with Ultrasound Sonography during distraction and consolidation period. Plain radiography, although it enables accurate measurement of the distraction gap, did not give sufficient detail to allow assessment of early stages of bone formation, But, ultrasound monitoring could enable continuous monitoring of the distraction gap without exposure to ionizing radiation and allow detection of fine detail, which may influence manipulation of the callus.