• Title/Summary/Keyword: Exposure energy

Search Result 997, Processing Time 0.03 seconds

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Determination of buildup factors for some human tissues using both MCNP5 and Phy-X / PSD

  • Mohammad M. Alda'ajeh;J.M. Sharaf;H.H. Saleh;Mefleh S. Hamideen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4426-4430
    • /
    • 2023
  • In this article, Exposure Buildup Factor(EBF) and the Energy Absorption Buildup Factor(EABF) have been determined for blood, brain, and muscle using the Monte Carlo method which is represented by MCNP5 codes and compared with geometric progression(G-P) fitting method which is represented by Phy-X/PSD online platform. The novelty of the present work is used an energy source of less than 0.1 MeV to determine buildup factors using MCNP5 and using Phy-X/PSD for some human tissues. thus, the energy range used in this case study was 0.06-3 MeV for penetration depths covered 0.5-3 MFP. Results of MCNP5 and Phy-X/PSD are validated against reference values of water that were reported at ANS-6.4.3. present results of EABFs and EBFs for the previously mentioned human tissues appeared good agreement between MCNP5 in comparison with Phy-X/PSD, whereas, the maximum average relative deviation did not exceed 2.37%. results of our article can be used in different medical applications, such as brachytherapy, radiotherapy, and diagnostics.

A Study on the Risk Assessment by Comparing Workplace Environment Measurement with Exposure Assessment Program(ECETOC TRA) (작업환경측정과 노출평가 프로그램(ECETOC TRA) 비교에 따른 위해성 평가에 관한 연구)

  • Ko, Won-Kyoung;Yi, Young-Seop
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • This study was conducted to compare the value of the working environment measurement with the expected exposure value drawn by using a program, thereby going to investigate whether it is available to the risk assessment of domestic workplace. We used the ECETOC TRA program which is one of the exposure predictive models. Four kinds of substances were measured in two workplace which was exposed to organic solvents and one kind of substance was measured in three workplace which was exposed to dusts and then an exposure assessment of chemical risk factors was conducted. The result value of the working environment measurement, solid substance exceeded standard in one site, and it was found that the other solid and liquid substances were within the standard. The value of the exposure assessment program showd the same result; it was higher than the value of the working environment measurement, suggesting that due to its nature, the exposure assessment program is run only on the worst situation. Therefore, it was found that when the exposure assesment program is used, variables should be substituted only after accurately assessing the workplace and it is a good idea to assess the risk beforehand with the exposure assessment program in the case of the workplace which employs no more than 5 people and where it is hard to assess the working environment.

Fabrication of Disposable Light Exposure Detector Kit using UV Curable Hydrogels (자외선 경화 하이드로겔을 사용한 일회용 빛 노출 검출 키트의 제조와 특성분석)

  • Kim, Young Ho;Kim, Gyu-Man;Dang, Trung Dung;Choi, Jin Ho;Kim, Hwan-Gon;Park, Sangju;Lee, Sang Hak
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2011
  • A disposable light exposure detector kit has been developed by UV curing of a hydrogel material. The devised light exposure detector kit consisted of light sensitive structures, bottom plate, character sheet and sticky back plate. A light exposure detector kit has a serial light sensitive structures that contain various light sensitive dyes such as rhodamine and fluorescein. The light sensitive structure composed of UV curable hydrogel polymer material as a supporing material and photosensitive dye in a certain concentration. The fabrication procedure of the ligh exposure detector kit is very simple and fast due to UV curing procedure of a photopolymerizable hydrogel material such as poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) with a photosensitive dye. By the proposed fabrication method, various size and shape of a light exposure detector kit could be fabricated using a flexible elastomer mold. Due to a fast and inexpensive fabrication method, the light exposure detector kit could be use a single use for various industrial applications. According to light irradation, the light sensitive structure on a light exposure detector kit could be lose its color by decomposition of a photosensitive dye chemical in the structure. Thus the amount of the exposed light on a substrate could easily be recognised by changing color or transparency of the structure.

Iodine Deposition onto the Chinese Cabbage (요오드의 배추에 대한 침적)

  • Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Yu, Dong-Han;Keum, Dong-Kwon;Lim, Kwang-Mook;Park, Hyo-Kook;Choi, Yong-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.173-177
    • /
    • 2004
  • The Chinese cabbage, being one of the principal foodstuffs in Asian countries, is tested for iodine exposure. As a radioactive source, iodine-125 of which the radiological half life is 60 days was used to measure the concentration change. Experiments were carried out four times with different times of exposure. The iodine source was prepared by the chemical reaction of NaI in order to avoid producing relatively large iodine which might be generated In the case of crystal evaporation. The deposition velocity was obtained from the integrated air concentration and surface concentration of the Chinese cabbage. The environmental half life was also calculated.

Average Glandular Dose In Mammography

  • Kim, K.H.;Ryu, Y.C.;Oh, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.319-321
    • /
    • 2004
  • The average glandular dose (AGD) is determined by the breast entrance skin exposure, x-ray tube target material, beam quality (half-value layer), breast thickness, and breast composition. Almost breast cancer always arises in glandular breast tissue. As a result, the average radiation absorbed dose to glandular tissue is the preferred measure of the radiation risk associated with mammography. If the normalized average glandular dose is known, the average glandular dose can be computed from the product of the normalized average glandular dose and breast entrance skin exposure. In this study, AGD was calculated by the breast thickness and various x-ray energy (HVL) in 50% glandular 50% adipose breast by Mo.-Rh. assembly. AGD is 84 mrad in compressed 5 cm breast. These results show that as increasing the breast thickness, dose also increases. But as increasing the x-ray tube voltage, dose decreases because of high penetrating ratio through the object. But high tube voltage is reducing the subject contrast. From this result, we have to consider the trade-off between subject contrast of image and dose to the patient and choose proper x-ray energy range.

  • PDF

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Characterization of Low-temperature SU-8 Negative Photoresist Processing for MEMS Applications

  • May Gary S.;Han, Seung-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.135-139
    • /
    • 2005
  • In this paper, negative SU-8 photoresist processed at low temperature is characterized in terms of delamination. Based on a $3^3$ factorial designed experiment, 27 samples are fabricated, and the degree of delamination is measured for each. In addition, nine samples are fabricated for the purpose of verification. Employing the. neural network modeling technique, a process model is established, and response surfaces are generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. From the response surfaces generated, two significant parameters associated with delamination are identified, and their effects on delamination are analyzed. Higher PEB temperature at a fixed PEB time results in a greater degree of delamination. In addition, a higher dose of exposure energy lowers the temperature at which the delamination begins and also results in a larger degree of delamination. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

The Experience in Dose Measurement of IVR with Glass Dosimeter System

  • Nishizawa, Kanae;Moritake, Takashi;Iwai, Kazuo;Matsumaru, Yuji;Tsuboi, Koji;Maruyama, Takashi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.269-271
    • /
    • 2002
  • It is reported that exposure for the patient and the medical staff from IVR is large. Direct measurement of patient exposure is difficult, since the measurement disturbs reading of images. The fluorescence glass-dosimeter system consisting of small-size glass chips is developed in recent years. Owing to its small size and physical characteristics, direct monitoring of surface dose may be feasible. The dose measurement for patient and medical staff during head interventional radiology (IVR) examinations was tried by using the fluorescence glass-dosimeter system. A dose response of the glass dosimeter is almost linear in large dose range but its energy dependency is high. About 20% variation of sensitivity was observed in the effective energy of 45-60keV which was used in IVR. In spite of this shortcoming, the fluorescence glass-dosimeter system is a convenient means for a dose monitoring during IVR performance.

  • PDF

The Research of Railway Noise through Auditory Experiments Focused on the Autonomic Nervous System and Cardiovascular System (청감실험을 통한 철도소음의 자율신경 및 심혈관계통 영향도 연구)

  • Lee, Jae Kwan;Yoon, Eun Sun;Jang, Chae Mi;Jae, Sae Young;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.674-679
    • /
    • 2016
  • According to the conventional studies on the noise and cardiovascular effect, railway noise is better associated with hypertension and adverse cardiovascular events than road traffic noise. But the underlying mechanisms remain unclear. We investigated the hypothesis that exposure to acute railway noise would the unfavorable effect of cardiovascular and autonomic system in healthy young subjects. Using a randomized, sham-controlled cross-over design, ten subjects were assigned to receive either an exposure to high speed train noise (84 dB) for 30 minutes or a control condition (non noise), separated by two days. Blood pressure, heart rate, augmentation index and heart rate variability as indices of cardiovascular and autonomic system function were measured at baseline, during, and recovery from two trials. The results show that exposure to acute railway noise significantly increased diastolic blood pressure and augmentation index, which may cause of adverse cardiovascular effects.