• Title/Summary/Keyword: Exposure doses

Search Result 568, Processing Time 0.026 seconds

Unveiling the direct conversion X-ray sensing potential of Brucinium benzilate and N-acetylglcyine

  • T. Prakash;C. Karnan;N. Kanagathara;R.R. Karthieka;B.S. Ajith Kumar;M. Prabhaharan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2190-2194
    • /
    • 2024
  • The study investigates the dose-dependent direct X-ray sensing characteristics of Brucinium benzilate (BB) and N-acetylglycine (NAG) organic crystals. BB and NAG were prepared as a slurry and deposited as a thick film on a patterned metal electrode. The X-ray induced photocurrent response was examined for various exposure doses using an intraoral pulsed 70 keV X-ray machine connected to a source meter. Subsequently, the morphological properties and thickness of the thick films were analyzed using scanning electron microscopy (SEM). At a photon energy of 70 keV, the attenuation coefficient values for NAG and BB crystals were determined to be approximately 0.181 and 0.178 cm2/g, respectively. The X-ray stopping power of the crystals was measured using a suniray-2 X-ray imaging system. To evaluate the responsiveness of the sensors, the photocurrent sensitivity and noise equivalent dose rate (NED) were calculated for both thick films. The findings demonstrated a noteworthy capability of sensing low doses (mGy), thereby suggesting the potential application of these organic materials in X-ray sensor development.

A Research of Standards for Radiopharmaceutical Doses in Pediatric Nuclear Medicine (소아 핵의학 검사 시 사용되는 방사성의약품의 양 산출 기준 조사)

  • Do, Yong-Ho;Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.47-50
    • /
    • 2009
  • Purpose: Presently, any exact standard of radiopharmaceutical doses in pediatric nuclear medicine doesn't exist in the universe. So hospitals are following by manual of vial kit or guidelines of America and Europe based on recommended adult doses adjusted for body mass (MBq/kg) or body surface area (MBq/$m^2$). However, especially for children younger than 1 year and heavier than 50 kg, it's hard to estimate exact dosage for those children. Materials and Methods: In order to obtain objective data of multipliers for pediatric studies, we surveyed 4 major hospitals in Korea. After receiving feedbacks, we changed dosage to multiplier. And we compared multipliers of Korea to America's and Europe's. Results: Most hospitals in Korea are following by body mass formula (MBq/kg). On the other hand, standards don't include proper factors for a child younger than 1 year and heavier than 50 kg. Multipliers for 3 kg children who are injected lower doses than needed are America:0.12, Europe:0.09, Korea:0.05, multipliers for 30 kg children who are injected proper doses are America:0.58, Europe:0.51, Korea:0.45 and multipliers for 60 kg children who are injected more doses than needed are America:0.95, Europe:0.95, Korea:0.91. Conclusions : Through the survey, when calculating doses for children, usually output doses are based on adult doses adjusted for body mass (MBq/kg) but research has shown that standards of all of the compared standards don't reflect exact multipliers for children younger than 1 year and heavier than 50 kg. Therefore, we should give an effort to reduce needless radiation exposure in children by establishing a proper doses standard and also developing better image reconstruction software.

  • PDF

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF

Quantitative Assessment of the Radiation Exposure during Pathologic Process in the Sentinel Iymph Node Biopsy using Radioactive Colloid (방사성 콜로이드를 이용한 감시림프절 생검 병리처리과정에서 방사선 피폭의 정량적 평가)

  • Song, Yoo-Sung;Lee, Jeong-Won;Lee, Ho-Young;Kim, Seok-Ki;Kang, Keon-Wook;Kook, Myeong-Cherl;Park, Weon-Seo;Lee, Geon-Kook;Hong, Eun-Kyung;Lee, Eun-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.309-316
    • /
    • 2007
  • Purpose: Sentinel lymph node biopsy became the standard procedure in early breast cancer surgery. Faculty members might be exposed to a trace amount of radiation. The aim of this study is to quantify the radiation exposure and verify the safety of the procedure and the facilities, especially during pathologic process. Materials and Methods: Sentinel lymph node biopsies with Tc-99m human serum albumin were performed as routine clinical work. Exposed radiation doses were measured in pathologic technologist, nuclear medicine technologist, and nuclear medicine physician using a thermoluminescence dosimeter (TLD) during one month. We also measured the residual radioactivities or absorbed dose rates, the exposure distance and time during procedure, the radiation dose of the waste and the ambient equivalent dose of the pathology laboratory. Results: Actual exposed doses were 0.21 and 0.85 (uSv/study) for the whole body and hand of pathology technologist after 47 sentinel node pathologic preparations were performed. Whole body exposed doses of nuclear medicine physician and technologist were 0.2 and 2.3 (uSv/study). According to this data and the exposure threshold of the general population (1 mSv), at least 1100 studies were allowed in pathology technologist. The calculated exposed dose rates (${\mu}$ Sv/study) from residual radioactivities data were 2.47/ 22.4 ${\mu}$ Sv (whole body/hand) for the surgeon; 0.22/ 0 ${\mu}$ Sv for operation nurse. The ambient equivalent dose of the pathology laboratory was 0.02-0.03 mR/hr. The radiation dose of the waste was less than 100 Bq/g and nearly was not detected. Conclusion: Pathologic procedure relating sentinel lymph node biopsy using radioactive colloid is safe in terms of the radiation safety.(Nucl Med Mol Imaging 2007;41(4);309-316)

Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation

  • Haji, Gunel;Nabizade, Ulviye;Kazimov, Kamal;Guliyeva, Naile;Isayev, Isa
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.254-258
    • /
    • 2019
  • Purpose: Deep inspiration breath hold (DIBH) is a well-established technique that enables efficient cardiac sparing in patients with left-sided breast cancer. The aim of the current study was to determine if DIBH is effective for reducing radiation exposure of of liver and other organs at risk in right breast radiotherapy (RT). Materials and Methods: Twenty patients with right-sided breast cancer were enrolled in this study. Three-dimensional conformal RT plans were generated for each patient, with two different computed tomography scans of free breathing (FB) and DIBH. Nodes were contoured according to the Radiation Therapy Oncology Group contouring guidelines. Dose-volume histograms for the target volume coverage and organs at risk were evaluated and analyzed. Results: DIBH plans showed significant reduction in mean liver dose (5.59 ± 2.07 Gy vs. 2.54 ± 1.40 Gy; p = 0.0003), V20Gy (148.38 ± 73.05 vs. 64.19 ± 51.07 mL; p = 0.0003) and V10Gy (195.34 ± 93.57 vs. 89.81 ± 57.28 mL; p = 0.0003) volumes compared with FB plans. Right lung doses were also significantly reduced in DIBH plans. Heart and left lung doses showed small but statistically significant improvement with application of the DIBH technique. Conclusion: We report that the use of DIBH for right-sided breast cancer significantly reduces the radiation doses to the liver, lungs, and heart.

Comparison of Three Dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Low Radiation Exposure of Normal Tissue in Patients with Prostate Cancer

  • Cakir, Aydin;Akgun, Zuleyha;Fayda, Merdan;Agaoglu, Fulya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3365-3370
    • /
    • 2015
  • Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.

Dermal Penetration Rate and Pharmacokinetics of the Insecticide Methidathion in Sprague-Dawley Rats

  • Sung, Ha-Jung;Kim, Jeong-Han
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.317-323
    • /
    • 2001
  • The skin penetration rate of methidathion in vitro and pharmacokinetics of methidathion in vivo were studied with male Sprague-Dawley rats by dermal treatment. The in vitro skin penetration rates for Sprague-Dawley rats of methidathion technical (50 mg, 100 ${mu}ell$) and emulsifable concentrate (EC,40mg, 100${mu}ell$) were determined as 18.4 $\mu\textrm{g}$/c $m^2$/h (RSD : 6.5) and 18.5 $\mu\textrm{g}$/c $m^2$/h (RSD : 3.2), respectively. Dose-related systemic exposure (AUC) was observed in rats after dermal treatment. The corresponding AUC, $T_{max}$, $C_{max}$, and $T_{1}$2/ of methidathion in plasma were 1.5$\mu\textrm{g}$.hr/ml, 6 h, 0.10 $\mu\textrm{g}$/ml, and 16 h, for 116mg/kg doses, 3.2 $\mu\textrm{g}$. hr/ml, 8 h, 0.12 $\mu\textrm{g}$/ml, and 23 h, for 232 mg/kg doses and 10 $\mu\textrm{g}$. hr/ml, 12 h, 0.32 $\mu\textrm{g}$/ml, and 20 h, for 1,160 mg/kg doses respectively. The urinary excretion of methidathion, estimated wing an equation derived from the in vitro skin penetration study was 0.24~0.35% of the absorbed dose. The concentration of methidathion in kidney was higher than that in liver. Dose-dependent absorption and excretion of methidathion without saturation was observed under in vivo experimental condition.n.n.

  • PDF

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Comparison of ESD and Major Organ Absorbed Doses of 5-Year-Old Standard Guidelines and Clinical Exposure Conditions (소아 5세 표준촬영 가이드라인과 임상 촬영조건의 입사표면선량과 주요 장기흡수선량 비교)

  • Kang, A-Rum;Lee, In-Ja;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.355-361
    • /
    • 2017
  • Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation

  • Kim, Minjeong;Jeong, Ji Seong;Kim, Hyunji;Hwang, Seungwoo;Park, Il-Hyun;Lee, Byung-Chul;Yoon, Sung Il;Jee, Sun Ha;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.512-519
    • /
    • 2018
  • Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.