• Title/Summary/Keyword: Exposure biomarker

Search Result 182, Processing Time 0.028 seconds

MOLECULAR BIOMARKER OF CADMIUM EXPOSURE IN FRESHWATER FISH: SENSITIVITY AND SPECIFICITY

  • Park, Kwangsik;Heekyung Bae;Nam, Seong-Sook;Kim, Enkyoung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.174-174
    • /
    • 2002
  • Metallothioneins (MTs) are known to be induced by heavy metals in various organs of different species and represent a potential biomarker of aquatic contamination by heavy metals. In this work, cloning and sequencing of a metallothionein gene in crucian carp (Carassius auratus) was done and sensitivities and specificities of the gene expressions were compared.(omitted)

  • PDF

Cellular Biomarker of Membrane Stability and Hydrolytic Enzyme Activity in the Hemocytes of Benzo(a)pyrene-exposed Pacific oyster, Crassostrea gigas

  • Jo Qtae;Choy Eun-Jung;Park Doo Won;Jee Young-Ju;Kim Sung Yeon;Kim Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2002
  • The Pacific oysters, Crassostrea gigas, were stressed with different concentrations of benzo(a) pyrene and depurated to determine the hemocyte lysosomal membrane stability and hydrolytic enzymatic activity as a biomarker candidate to the chemical, using NRR (neutral red retention) and API ZYM System, respectively. The membrane damage measured as NRR decrease was significant with the increase of chemical concentration and exposure time (P<0.05), providing a possible tool for biomarker. Interestingly, the control showed intrinsic stress probably due to captive life in the laboratory, and a recovering trend was also found during the depuration. The benzo(a)pyrene-exposed oysters showed increased enzyme activities in alkaline phosphatase, esterase (C4), acid phosphatase, naphthol-AS-BI-phospho­hydrolase, $\beta$-galactosidase, $\beta$-glucuronidase, and N-acetyl- $\beta$-glucosaminidase. Of them, only two enzymes, acid phosphatase and alkaline phosphatase, showed some potential available for the generation of enzymatic biomarker in the oyster. The results are suggestive of the potential availability of the cellular and enzymatic properties as a biomarker. However, considering that a robust biomarker should be insensitive to natural stress coming from normal physiological variation, but sensitive to pollutants, a concept of intrinsic stress the animal possesses should be taken into consideration. This reflects the necessity of further research on the intrinsic stress affecting the cellular and enzymatic properties of the chemical­stressed oysters prior to using the data as a biomarker.

Urinary Trans, Trans-Muconic Acid is Not a Reliable Biomarker for Low-level Environmental and Occupational Benzene Exposures

  • Jalai, Amir;Ramezani, Zahra;Ebrahim, Karim
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.220-225
    • /
    • 2017
  • Background: Benzene is a known occupational and environmental pollutant. Its urinary metabolite trans, trans-muconic acid (tt-MA) has been introduced by some environmental and occupational health regulatory associations as a biological index for the assessment of benzene exposure; however, recently, doubts have been raised about the specificity of tt-MA for low-level benzene exposures. In the present study, we investigated the association between urinary levels of tt-MA and inhalational exposure to benzene in different exposure groups. Methods: Benzene exposure was assessed by personal air sampling. Collected benzene on charcoal tube was extracted by carbon disulfide and determined by a gas chromatograph (gas chromatography with a flame ionization detector). Urinary tt-MA was extracted by a strong anion-exchange column and determined with high-performance liquid chromatography-UV. Results: Urinary levels of tt-MA in intensive benzene exposure groups (chemical workers and police officers) were significantly higher than other groups (urban and rural residents), but its levels in the last two groups with significant different exposure levels (mean = 0.081 ppm and 0.019 ppm, respectively) showed no significant difference (mean = $388{\mu}g/g$ creatinine and $282{\mu}g/g$, respectively; p < 0.05). Before work shift, urine samples of workers and police officers showed a high amount of tt-MA and its levels in rural residents' samples were not zero. Conclusion: Our results suggest that tt-MA may not be a reliable biomarker for monitoring low-level (below 0.5 ppm) benzene exposures.

Association between CYP1A1 Expression and Childhood Asthma (CYP1A1 유전자발현과 소아천식의 상관)

  • Yang Mihi
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.3 s.50
    • /
    • pp.209-213
    • /
    • 2005
  • Due to steady increase of childhood asthma, exposure to air toxics including PAHs have been thought as an etiology for the asthma. PAHs -involvement in airway inflammation, such as IgE production, is the potential mechanism of the PAHs-induced asthma. Cytochrome P450s (CYPs), particularly CYP1A1 is known enzyme to metabolite PAHs and to be induced by PAHs. The CYP1A1 expression has been emphasized as an biomarker for PAHs - exposure. The present study was performed to clarify the etiology of childhood asthma with PAHs-exposure using mRNA expression of CYP1A1 . The study Objects were Korean children who were asthma patients (cases) or other hospital controls (N=20; age,3 $\~$ 16; boys,56$\%$). As result, we detected expression of the CYP1A1 in all peripheral blood specimens which were collected from the subjects. Moreover, we found approx. 300 fold-higher expression of the CYP1A1 in the cases than that in the controls (p(<)0.01). When we considered age which was related to Asthma, the above significant trend was somewhat diluted, however, the relation between asthma and the Cypih i expression waL stronger than that between asthma and age (chi square,7.99 vs. 3.34). Therefore, our study supports that PAHs induce or worse childhood asthma and suggests application of expression of the CYP1A1 as an initiation or progress biomarker for PAHs - induced childhood asthma.

Detection of Urinary 8-Hydroxyguanine Adduct as Exposure Biomarker for Oxidative Stress (산화적스트레스에 대한 노출척도로서 뇨중 8-Hydroxyguanine Adduct의 측정)

  • 유아선;김윤신;모인필;마응천;조명행
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 1998
  • Oxidative stress by reactive oxygen species (ROS) damages cellular DNA, RNA, proteins, lipids and others causing various diseases such as cancer, arthritis, and heart diseases. 8-Hydroxyguanine (8-OHG) is one of the products formed from DNA or RNA damaged by ROS. Since high amounts of 8-OHG can be excreted in urine, it may serve as a potential biomarker indicating the level of oxidative damage to nucleic acids. Residents in industrial area with severe air pollution are expected to be affected by higher level of oxidative stress from pollutants like polyaromatic hydrocarbons (PAHs), etc. Smokers are also expected to be damaged by higher level of oxidative stress from cigarette smoke components like PAHs than non-smokers. To examine if the determination of the urinary concentration of 8-OHG could be used as exposure biomarker for the oxidative stress caused by air-pollutants, this study was performed to determine and compare the urinary concentrations of 8-OHG in smokers and non-smokers, or non-polluted area residents and polluted area residents. Urine samples were collected and purified by a strong cation exchange and cellulose partition column, then analyzed by HPLC with electrochemical detector at 600 ㎷ potential. Concentrations of urinary 8-OHG in non-smokers and smokers of Seoul area college male students were determined as 15.12$\pm$9.68 (ng/mg creatinine) and 34.72$\pm$11.72 (ng/mg creatinine), respectively, showing significantly higher level of 8-OHG in smokers than in non-smokers. Urine samples of elementary school students were collected from Sokcho area, which is known to be non-polluted, and 3 representative polluted areas; Yocheon industrial area, Ulsan urban and Ulsan industrial area. The concentrations of 8-OHG in these samples were 12.42$\pm$8.27 (ng/ mg creatinine, Sokcho), 22.55$\pm$9.12 (ng/mg creatinine, Yocheon), 17.41$\pm$2.30 (ng/mg creatinine, Ulsan urban), 55.04$\pm$39.73 (ng/mg creatinine, Ulsan industrial). Thus, samples from polluted area tend to have higher level of 8-OHG and the levels of Yocheon and Ulsan industrial area were significantly higher than that of Sokcho area. The results indicate that the residents of polluted industrial area or smokers are more severely exposed to oxidative stress probably caused by air pollutants like PAHs. Thus, the determination of urinary 8-OHG concentration could be used as biomarker for the extent of body exposure to oxidative stress caused by various pollutants.

  • PDF

Measurement of Hemoglobin Adducts in Female Mice Inhaled with 1,3-butadiene by Using GC/MS

  • Lee, Jin-Heon;Shin, Ho-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • 1,3-butadiene(DB) is a well-established rodent carcinogen, and a probable carcinogen to humans. This study was investigated the formation of hemoglobin adduct in ICR female mice inhaled with BD for 3 weeks (5 hr/day, 5 days/week). Body weights of mice were significantly low from onward day 4 or 9 of exposure comparing the control. Hemoglobin adducts formed by DB exposure were (N-2-hydroxy-3-butenyl) valine (HB Val adduct) and (N-2,3,4-trihydroxy-butyl)valine(THB Val adduct). The levels of HB Val adducts were 1.8, 3.7 and 6.2 pmol/mg globin for the 500 ppm BD inhalation group, and 5.7, 7.4 and 16.0 pmol/mg globin for the 1000 ppm BD inhalation group, when observed on the $1^{st},\;2^{nd},\;and\;3^{rd}$ week after inhalation exposure, respectively. The levels of THBVal adducts were 32.0, 42.0 and 55.0 pmol/mg globin for the 500 ppm DB inhalation group, and 67.8, 72.7 and 83.5 pmol/mg globin for the 1000 ppm BD inhalation group, when observed on the $1^{st},\;2^{nd},\;and\;3^{rd}$ week after inhalation exposure, respectively. Ratios of THBVal and HBVal adducts were higher at earlier exposure period and lower concentration. Ratios on the $1^{st},\;2^{nd},\;and\;3^{rd}$ week were 17.8, 11.4 and 8.87 for the 500 ppm BD inhalation group, and 11.9, 9.8 and 5.2 for the 1000 ppm BD inhalation group, respectively. In conclusion, THB Val and HB Val adducts were the important hemoglobin adducts in ICR female mice inhaled with BD, and the latter was more appropriate biomarker than the other for biological monitoring of BD exposure.

A Study on Formation of Hemoglobin Adduct in Blood of Mice Inhaled with Ethylene Oxide (에틸렌옥사이드에 폭로된 흰쥐의 혈액에 형성된 헤모글로빈 부가체에 대한 연구)

  • Lee Jin-Heon;Shin Ho-Sang;Ahn Hye-Sil
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.164-170
    • /
    • 2006
  • Ethylene oxide is a genotoxic carcinogen with widespread uses as industrial chemical intermediate and gaseous sterilant. 2-hydroxyethylated N-terminal valine in Hb is a good biomarker for biological monitoring of ethylene oxide exposure, because of its stability. For measuring the hemoglobin adduct formed by exposure of ethylene oxide, we studied the determination of (N-2-hydroxy-ethyl)valine(HEV) in hemoglobin adduct by using GC/MS. Firstly we synthesized HEV with 2-amino-ethanol and bromoisovaleric acid(BIVA) and confirmed it with GC/MS-FID. Its fragmentations were m/z 116(base ion, M+-45) and m/z 130(M+-31). For measuring HEV with higher sensitivity, we use derivatives which were PFPITH(pentafluorophenylisothiocianate) and TBDMS (tributyldimethylsilylation) by using Edman procedure. Its fragmentation were m/z 425(M+-57), m/z 383(M+-99) and m/z 172(M+-310) by using GC/MS. We did biological monitoring for mice inhalation exposure with 400 ppm ethylene oxide. The concentrations of hemoglobin adduct were $168{\pm}3.8\;and\;512{\pm}04$(nmol g-1 globin) at 0.5 hr/day 400 ppm ethylene oxide inhalation exposure group, and $631{\pm}17\;and\;2265{\pm}9.4$(nmol g-1 globin) at 1.0 hr/day 400 ppm ethylene oxide inhalation exposure for 1 and 4 weeks, respectively. We confirmed that (N-2-hydroxy-ethyl)valine(HEV) of hemoglobin was a good biomarker for biomonitoring of ethylene oxide exposure, and can measured with derivatives such as PFPITH(pentafluorophenylisothiocianate) and TBDMS(tributyldimethylsilylation) by using GC/MS.

Issues in the Design of Molecular and Genetic Epidemiologic Studies

  • Fowke, Jay H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.343-348
    • /
    • 2009
  • The final decision of study design in molecular and genetic epidemiology is usually a compromise between the research study aims and a number of logistical and ethical barriers that may limit the feasibility of the study or the interpretation of results. Although biomarker measurements may improve exposure or disease assessments, it is necessary to address the possibility that biomarker measurement inserts additional sources of misclassification and confounding that may lead to inconsistencies across the research literature. Studies targeting multi-causal diseases and investigating gene-environment interactions must not only meet the needs of a traditional epidemiologic study but also the needs of the biomarker investigation. This paper is intended to highlight the major issues that need to be considered when developing an epidemiologic study utilizing biomarkers. These issues covers from molecular and genetic epidemiology (MGE) study designs including cross-sectional, cohort, case-control, clinical trials, nested case-control, and case-only studies to matching the study design to the MGE research goals. This review summarizes logistical barriers and the most common epidemiological study designs most relevant to MGE and describes the strengths and limitations of each approach in the context of common MGE research aims to meet specific MEG objectives.

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.