• 제목/요약/키워드: Exposure Scenarios

검색결과 140건 처리시간 0.027초

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • 제35권1호
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

Radiological safety evaluation of dismantled radioactive concrete from Kori Unit 1 in the disposal and recycling process

  • Lee, ChoongWie;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.2019-2024
    • /
    • 2021
  • For evaluating the radiological safety of dismantled concrete, the process of disposal and recycling of the radioactive concrete generated during the dismantling of Kori Unit 1 is analyzed. Four scenarios are derived based on the analysis of the concrete recycling and disposal process, and the potential exposure to the workers and public during this process are calculated. VISIPLAN and RESRAD code are used for evaluating the dosages received by the workers and public in the following four scenarios: concrete inspection, transport of concrete by the truck driver, driving on a recycled concrete road, and public living near the landfilled concrete waste. Two worker exposure scenarios in the processing of concrete and two public exposure scenarios in recycling and disposal are considered; in all the scenarios, the exposure dose does not exceed the annual dose limit for each representative.

RCP 시나리오에 따른 남해안 어업 및 어종의 기후변화 노출 분석 : 수온 변동을 대상으로 (An Analysis on the Climate Change Exposure of Fisheries and Fish Species in the Southern Sea under the RCP Scenarios: Focused on Sea Temperature Variation)

  • 김봉태;이준수;서영상
    • 수산경영론집
    • /
    • 제47권4호
    • /
    • pp.31-44
    • /
    • 2016
  • The purpose of this study is to analyze the climate change exposure of fisheries and fish species in the southern sea of Korea under the RCP climate change scenarios. The extent of exposure was calculated through weighted sum of the sea temperature forecasted by National Institute of Fisheries Science, and the weight were obtained from the time-space distribution of each fisheries or species, based on the micro-data for the fishing information reported by each fisherman. Results show that all the exposed sea temperature of RCP8.5 is higher than that of RCP4.5 in year 2100 as well as in near 2030, therefore it is thought to be very important to reduce the GHG emission even in the short term. The extent of exposure was analyzed to be comparatively high especially in the fisheries such as anchovy drag nets and species like cod, anchovy and squid. Meanwhile the method of this study is considered to be excellent to obtain the accurate extent of exposure under RCP scenarios, and therefore it is applicable on assessing the vulnerability of climate change in fisheries.

원전 고피폭 작업의 예측 피폭선량 정확도 개선을 위한 전산코드 시나리오 보정인자 도출 방법론 (Methodology for Calculating Correction Factors to Improve the Accuracy of Radiation Dose Predictions for High-Exposure Tasks in Nuclear Power Plants Using Computational Scenarios)

  • 송창주;공태영;김지웅;박재옥;조승호;김희근;김용권
    • 방사선산업학회지
    • /
    • 제18권3호
    • /
    • pp.223-226
    • /
    • 2024
  • It is essential to precisely evaluate the expected dose (collective dose) before performing high-exposure tasks in nuclear power plants because those have a high potential to cause significant radiation exposure to workers. A dose evaluation method is to design the scenarios of high-exposure tasks using computational codes, which allows for the calculation of the expected collective dose. Although these computational scenarios are useful for estimating the expected radiation dose and establishing radiation protection plans, the calculated doses may not perfectly match the actual doses that workers receive during tasks due to differences between the scenario and the actual circumstances in the radiation fields. Therefore, this study presents a methodology for calculating correction factors to improve the accuracy of dose predictions from computational scenarios. This approach aims to make the predicted collective dose before the task closer to the actual dose received by workers, thereby enhancing radiation safety for personnel performing high-exposure tasks. Additionally, these correction factors will help accurately predict doses under various working conditions in the future, contributing to minimizing radiation exposure risks for nuclear power plant workers.

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

사고 대응 작업자 피폭선량 평가 (Dose Assessment for Workers in Accidents)

  • 김준혁;윤선홍;차길용;배진형
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.265-273
    • /
    • 2023
  • To effectively and safely manage the radiation exposure to nuclear power plant (NPP) workers in accidents, major overseas NPP operators such as the United States, Germany, and France have developed and applied realistic 3D model radiation dose assessment software for workers. Continuous research and development have recently been conducted, such as performing NPP accident management using 3D-VR based on As Low As Reasonably Achievable (ALARA) planning tool. In line with this global trend, it is also required to secure technology to manage radiation exposure of workers in Korea efficiently. Therefore, in this paper, it is described the application method and assessment results of radiation exposure scenarios for workers in response to accidents assessment technology, which is one of the fundamental technologies for constructing a realistic platform to be utilized for radiation exposure prediction, diagnosis, management, and training simulations following accidents. First, the post-accident sampling after the Loss of Coolant Accident(LOCA) was selected as the accident and response scenario, and the assessment area related to this work was established. Subsequently, the structures within the assessment area were modeled using MCNP, and the radiation source of the equipment was inputted. Based on this, the radiation dose distribution in the assessment area was assessed. Afterward, considering the three principles of external radiation protection (time, distance, and shielding) detailed work scenarios were developed by varying the number of workers, the presence or absence of a shield, and the location of the shield. The radiation exposure doses received by workers were compared and analyzed for each scenario, and based on the results, the optimal accident response scenario was derived. The results of this study plan to be utilized as a fundamental technology to ensure the safety of workers through simulations targeting various reactor types and accident response scenarios in the future. Furthermore, it is expected to secure the possibility of developing a data-based ALARA decision support system for predicting radiation exposure dose at NPP sites.

외국 노출량 산정 프로그램(ECETOC TRA)의 국내 적용을 위한 입력변수의 보정에 관한 연구 (Evaluation of the Application of a European Chemical Risk Assessment Tool in Korea)

  • 이종한;이권섭;홍문기
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.191-199
    • /
    • 2012
  • Objectives: The study aim was to evaluate the application of a chemical exposure assessment tool for the Korean workplace. The Ministry of Employment and Labor in Korea (KMOEL) introduced the need for workplace risk assessments in 2011, requiring the Korean chemical industry to consider both domestic and international chemical regulation policies (e.g., estimations of exposure scenarios). Exposure scenarios are required in the European Union as part of material safety data sheets (MSDS) under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) system. Methods: Although many programs for the estimation of exposure have been developed worldwide, to date there is no standard for the Korean workplace. To develop programs suitable for the Korean workplace, we examined the applicability of the European Center for Ecotoxicology and Toxicology of Chemicals target risk assessment (ECETOC TRA), which is recommended by the European Chemical Agency (ECHA). Results: To investigate the applicability of the ECETOC TRA to Korean industry, this study simulated 15 industrial processes. The predicted respiratory exposures for four processes using origin input parameters were underestimated compared to the measured respiratory exposure. Using calibrated input parameters, results for two processes were underestimated compared to the measured respiratory exposure. This result suggests that the use of calibrated input parameters reduces the differences between predicted and measured respiratory exposure. Conclusions: we developed applicable exposure estimating method by modifying the ECETOC TRA program; one suggested the development of exposure estimating program that explains Korea domestic workplace exposure scenario.This study will support the introduction of exposure scenario in MSDS system and protect health of worker from hazardous chemical.

시나리오별 논에서의 molinate 노출위험도 분석: (2) 노출위험도 평가 (Scenario-Based Exposure Risk Assessment of Molinate in a Paddy Plot ; (2) Exposure Risk Assessment)

  • 박기중;정상옥
    • 한국농공학회논문집
    • /
    • 제50권4호
    • /
    • pp.17-24
    • /
    • 2008
  • Exposure risk assessment of pesticide molinate using the RICEWQ model in a rice paddy plot was performed to observe the effects of various water and pesticide management scenarios. Several scenarios were developed to represent the specific water and pesticide management practices of rice cultivation in Korea. The results of the scenario analysis using the RICEWQ model simulation from the previous studies were analysed. The molinate risk for aquatic organisms is evaluated by the ratio of the predicted environmental concentration(PEC) and the predicted no-effect concentration(PNEC). The results showed that the no-effect periods for aquatic organisms for the deep, shallow and very shallow irrigation conditions were 33.3, 28.9 and 25.6 DATs for the lable rate application and 36.4, 33.7 and 30.8 DATs for the double lable rate application, respectively. The higher application rate showed greater exposure risk to the aquatic organisms. Based on this study, the withholding period of molinate practiced in Korea, that is 3 to 4 DATs, must be much longer. The results of this study can be used for the non-point source pollution control and environmental policy making regarding pesticides.

음용수중 휘발성 유기오염물질의 노출경로에 따른 위해도 추정치 비교연구 (A Study on Comparison of Risk Estimates Among Various Exposure Scenario of Several Volatile Organic Compounds in Tap Water)

  • 정용;신동천;김종만;양지연;박성은
    • Environmental Analysis Health and Toxicology
    • /
    • 제10권1_2호
    • /
    • pp.21-35
    • /
    • 1995
  • Risk assessment processes, which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. We compared risk estimates among various exposure scenarios of vinyl chloride, trichloroethylene and tetrachloroethylene in tap water. The contaminant concentrations were analyzed from tap water samples in Seoul from 1993 to 1994. The oral and inhalation cancer potencies of the contaminants were estimated using multistage, Weibull, lognormal, and Mantel-Bryan model in TOX-RISK computer software. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL(maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates(mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for volatile organic compounds, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF