• 제목/요약/키워드: Exposure Energy

검색결과 1,006건 처리시간 0.026초

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria;Victoria, Maximo;Hoffelner, Wolfgang
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2009
  • The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

Tissue distribution, excretion and effects on genotoxicity of tritium following oral administration to rats

  • Lee, Jei Ha;Kim, Cha Soon;Choi, Soo Im;Kim, Rae-Kwon;Kim, Ji Young;Nam, Seon Young;Jin, Young Woo;Kim, In Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.303-309
    • /
    • 2019
  • Tritium is an important nuclide that must be monitored for radiation safety management. In this study, HTO was orally administered to rats at the level of 37 kBq ($1{\mu}Ci$) or 370 kBq ($10{\mu}Ci$) to examine tissue distribution and excretion levels. After sacrifice, wet and dry tissue samples were weighed and analyzed for tissue free-water tritium (TFWT) and organically bound tritium (OBT). The mean tissue concentrations of TFWT (OBT) were 30.9 (17.8) and 4.4 (8.1) Bq/g on days 7 and 13 at the 37 kBq level and 30.8 (64.6) Bq/g on day 17 at the 370 kBq level. To assess the cytogenetic damage due to tritium exposure, a cytokinesis-blocked micronucleus (MN) assay was performed in blood samples from rats exposed to HTO for 14 and 21 days after oral administration. There was no significant difference in the MN frequencies between the control and exposed rats.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Determination of buildup factors for some human tissues using both MCNP5 and Phy-X / PSD

  • Mohammad M. Alda'ajeh;J.M. Sharaf;H.H. Saleh;Mefleh S. Hamideen
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4426-4430
    • /
    • 2023
  • In this article, Exposure Buildup Factor(EBF) and the Energy Absorption Buildup Factor(EABF) have been determined for blood, brain, and muscle using the Monte Carlo method which is represented by MCNP5 codes and compared with geometric progression(G-P) fitting method which is represented by Phy-X/PSD online platform. The novelty of the present work is used an energy source of less than 0.1 MeV to determine buildup factors using MCNP5 and using Phy-X/PSD for some human tissues. thus, the energy range used in this case study was 0.06-3 MeV for penetration depths covered 0.5-3 MFP. Results of MCNP5 and Phy-X/PSD are validated against reference values of water that were reported at ANS-6.4.3. present results of EABFs and EBFs for the previously mentioned human tissues appeared good agreement between MCNP5 in comparison with Phy-X/PSD, whereas, the maximum average relative deviation did not exceed 2.37%. results of our article can be used in different medical applications, such as brachytherapy, radiotherapy, and diagnostics.

작업환경측정과 노출평가 프로그램(ECETOC TRA) 비교에 따른 위해성 평가에 관한 연구 (A Study on the Risk Assessment by Comparing Workplace Environment Measurement with Exposure Assessment Program(ECETOC TRA))

  • 고원경;이영섭
    • 대한안전경영과학회지
    • /
    • 제15권3호
    • /
    • pp.1-6
    • /
    • 2013
  • This study was conducted to compare the value of the working environment measurement with the expected exposure value drawn by using a program, thereby going to investigate whether it is available to the risk assessment of domestic workplace. We used the ECETOC TRA program which is one of the exposure predictive models. Four kinds of substances were measured in two workplace which was exposed to organic solvents and one kind of substance was measured in three workplace which was exposed to dusts and then an exposure assessment of chemical risk factors was conducted. The result value of the working environment measurement, solid substance exceeded standard in one site, and it was found that the other solid and liquid substances were within the standard. The value of the exposure assessment program showd the same result; it was higher than the value of the working environment measurement, suggesting that due to its nature, the exposure assessment program is run only on the worst situation. Therefore, it was found that when the exposure assesment program is used, variables should be substituted only after accurately assessing the workplace and it is a good idea to assess the risk beforehand with the exposure assessment program in the case of the workplace which employs no more than 5 people and where it is hard to assess the working environment.

자외선 경화 하이드로겔을 사용한 일회용 빛 노출 검출 키트의 제조와 특성분석 (Fabrication of Disposable Light Exposure Detector Kit using UV Curable Hydrogels)

  • 김영호;김규만;;최진호;김환곤;박상주;이상학
    • 응용화학
    • /
    • 제15권1호
    • /
    • pp.17-20
    • /
    • 2011
  • A disposable light exposure detector kit has been developed by UV curing of a hydrogel material. The devised light exposure detector kit consisted of light sensitive structures, bottom plate, character sheet and sticky back plate. A light exposure detector kit has a serial light sensitive structures that contain various light sensitive dyes such as rhodamine and fluorescein. The light sensitive structure composed of UV curable hydrogel polymer material as a supporing material and photosensitive dye in a certain concentration. The fabrication procedure of the ligh exposure detector kit is very simple and fast due to UV curing procedure of a photopolymerizable hydrogel material such as poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) with a photosensitive dye. By the proposed fabrication method, various size and shape of a light exposure detector kit could be fabricated using a flexible elastomer mold. Due to a fast and inexpensive fabrication method, the light exposure detector kit could be use a single use for various industrial applications. According to light irradation, the light sensitive structure on a light exposure detector kit could be lose its color by decomposition of a photosensitive dye chemical in the structure. Thus the amount of the exposed light on a substrate could easily be recognised by changing color or transparency of the structure.

요오드의 배추에 대한 침적 (Iodine Deposition onto the Chinese Cabbage)

  • 이한수;최희주;강희석;유동한;금동권;임광묵;박효국;최용호;이창우
    • Journal of Radiation Protection and Research
    • /
    • 제29권3호
    • /
    • pp.173-177
    • /
    • 2004
  • 아시아 국가에서 주요한 섭취작물중 하나인 배추에 대하여 요오드 침적실험을 수행하였다. 방사선원으로 반감기가 60일인 $^{125}I$를 사용하여 농도변화를 관찰하였다. 실험은 피폭시기를 다르게 하여 4번에 걸쳐 수행되었다. 요오드는 NaI의 화학반응으로부터 제조되어 사용되었는데 이유는 일반적인 결정을 증발시키는 방법으로는 비교적 큰 요오드 입자가 생기기 때문에 입자조절이 가능한 화학반응을 사용하였다. 침적속도는 공기중 농도를 시간에 대해 적분한 것과 배추 표면의 표면농도로부터 얻었다. 또한 환경제거반감기도 계산되었다.

Average Glandular Dose In Mammography

  • Kim, K.H.;Ryu, Y.C.;Oh, C.H.
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.319-321
    • /
    • 2004
  • The average glandular dose (AGD) is determined by the breast entrance skin exposure, x-ray tube target material, beam quality (half-value layer), breast thickness, and breast composition. Almost breast cancer always arises in glandular breast tissue. As a result, the average radiation absorbed dose to glandular tissue is the preferred measure of the radiation risk associated with mammography. If the normalized average glandular dose is known, the average glandular dose can be computed from the product of the normalized average glandular dose and breast entrance skin exposure. In this study, AGD was calculated by the breast thickness and various x-ray energy (HVL) in 50% glandular 50% adipose breast by Mo.-Rh. assembly. AGD is 84 mrad in compressed 5 cm breast. These results show that as increasing the breast thickness, dose also increases. But as increasing the x-ray tube voltage, dose decreases because of high penetrating ratio through the object. But high tube voltage is reducing the subject contrast. From this result, we have to consider the trade-off between subject contrast of image and dose to the patient and choose proper x-ray energy range.

  • PDF

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Characterization of Low-temperature SU-8 Negative Photoresist Processing for MEMS Applications

  • May Gary S.;Han, Seung-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.135-139
    • /
    • 2005
  • In this paper, negative SU-8 photoresist processed at low temperature is characterized in terms of delamination. Based on a $3^3$ factorial designed experiment, 27 samples are fabricated, and the degree of delamination is measured for each. In addition, nine samples are fabricated for the purpose of verification. Employing the. neural network modeling technique, a process model is established, and response surfaces are generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. From the response surfaces generated, two significant parameters associated with delamination are identified, and their effects on delamination are analyzed. Higher PEB temperature at a fixed PEB time results in a greater degree of delamination. In addition, a higher dose of exposure energy lowers the temperature at which the delamination begins and also results in a larger degree of delamination. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.