• Title/Summary/Keyword: Exponential Function

Search Result 947, Processing Time 0.027 seconds

Fracture Toughness Prediction of RPV Steels Using Crack Arrest Load of Load-Displacement Curve in Charpy V - Notch Impact Test (샤피 V - 노치 충격 하중-변위 곡선의 균열정지하중을 이용한 원자로압력용기강의 파괴인성 예측)

  • Park, Jeong-Yong;Kim, Ju-Hak;Lee, Yun-Gyu;Hong, Jun-Hwa
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.305-311
    • /
    • 2000
  • Applicability of crack arrest load measured from the Charpy V-notch impact test has been investigated to predict the fracture toughness of nuclear reactor pressure vessel (RPV) steels (ASME SA508 Cl.3). The temperature dependence of the crack arrest load was well described by the type of exponential function characterized by an index temperature at which the crack arrest load is 2kN. The specific index temperature, which also well correlated with $T_{NDT}\;and\;T_{41J}$ is expected to be representative index temperature characterizing the crack arrest fracture toughness of RPV steels. Also, the crack arrest load correlated well with the stable crack length measured from the fracture surface. From the measurements of the crack arrest load and the stable crack length, the lower bound fracture toughness, $K_{Ia}$ of RPV steels could be predicted with sufficient accuracy.

  • PDF

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.

The Effect of Change in Moisture Content on Some Physical Properties of Grains (I) -Spericity, Weight, Volume- (含水率變化가 穀物의 物理的 特性에 미치는 影響(I) -球形率, 重量, 體積-)

  • Oh, Moo-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.59-68
    • /
    • 1984
  • The Purpose of this study was to investigate the effect of the change in misture content on some physical properties of grains, and some relations amont the properties. Materials included ere rough rice, brown rice, barley and wheat with the range of moisture content of 6~26 percent, 7~25 percent, 10~24 percent and 6~22 percent, respectively. Kernel dimension, sphericity, kernel weight, and volume were included as the physical properties of the grains. The results obtained are summarized as follows; 1. The ratio of grain length to the thickness was in the range of 3.59~4.16 for rough rice(Indica type), 2.98~3.27 for rough rice(Japonica type), 3.25 for brown rice (I.T.), 2.14~2.38 for brown rice(J.T.), 2.92~3.13 for barley and 2.10~2.21 for wheat, respectively. 2. The sphericity was found to be 42 percent for rough rice(I.T.), 48 percent for rough rice(J.T.), 52 percent for brown rice(I.T.), 62 percent for brown rice(J.T.), 45 percent for barley and 61 percent for wheat, respectively. 3. The kernel weight of grains was linealy increased with the increase of moisture content. At a specified moisture centent of 14 percent, the kernel weight was shown to be in the range of 4.72${\times}10^{-5}$~3.58${\times}10^{-5}$kg for wheat, 3.60${\times}10^{-5}$~3.12${\times}10^{-5}$kg for barley, 2.80${\times}10^{-5}$~2.35${\times}10^{-5}$kg for rough rice, and 2.24${\times}10^{-5}$~1.82${\times}10^{-5}$kg for brown rice, respectively. 4. The kernel volume was linearly increased with increase of moisture content. The rate of increase was significantly low for rough rice in comparison with the remaining grains. The kernel volume, at a specified moisture content of 14 percent, was in the range of 3.51${\times}10^{-8}$~2.76${\times}10^{-8}m^3$ for wheat, 2.84${\times}10^{-8}$~2.43${\times}10^{-8}m^3$ for barley, 2.93${\times}10^{-8}$~1.97${\times}10^{-8}m^3$ for rough rice, and 1.61${\times}10^{-8}$~1.29${\times}10^{-8}m^3$ for brown rice, respectively. 5. The kernel volume of grains was found to be related to the length, width, thickness and kernel weight as a exponential function. The kernel volume was shown to have correlation coefficient to the length factor rough rice and barley which were of low sphericity, while the width factor was predominant for brown rice and wheat which was of high sphericity.

  • PDF

$In_{0.64}Al_{0.36}Sb$층의 성장온도 및 도핑에 따른 광학적 특성

  • O, Jae-Won;Kim, Hui-Yeon;Ryu, Mi-Lee;Im, Ju-Yeong;Sin, Sang-Hun;Kim, Su-Yeon;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.160-160
    • /
    • 2010
  • 테라헤르츠 소스로 저온 InGaAs를 대체하기 위해 저온에서 성장한 $In_{0.64}Al_{0.36}Sb$의 성장 온도에 따른 광학적 photoluminescence (PL)과 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. 또한 Be 도핑 농도에 따른 p형 $In_{0.64}Al_{0.36}Sb$의 PL과 TRPL 특성을 undoped $In_{0.64}Al_{0.36}Sb$와 Si-doped $In_{0.64}Al_{0.36}Sb$ 결과와 비교 분석하였다. 본 연구에 사용한 시료는 분자선 엑피탁시 (molecular beam epitaxy)법으로 GaAs 기판 위에 $In_{0.64}Al_{0.36}Sb$을 다양한 성장온도에서 ${\sim}3.7\;{\mu}m$두께 성장하였다. $In_{0.64}Al_{0.36}Sb$의 성장온도는 $400^{\circ}C$ 에서 $460^{\circ}C$까지 변화시키며 성장하였으며, Si과 Be 도핑한 $In_{0.64}Al_{0.36}Sb$ 시료는 약 $420^{\circ}C$에서 성장하였다. 모든 시료의 PL 피크는 ~1450 nm 근처에서 나타나며 단파장 영역에 shoulder 피크가 나타났다. 그러나 가장 낮은 온도 $400^{\circ}C$에서 성장한 시료는 1400 nm에서 1600 nm에 걸쳐 매우 넓은 피크가 측정되었다. PL 세기는 $450^{\circ}C$ 에서 성장한 시료가 가장 강하게 나타났으며, $435^{\circ}C$에서 성장한 시료의 PL 세기가 가장 약하게 나타났다. 방출파장에 따른 PL 소멸곡선을 측정하였으며 double exponential function을 이용하여 운반자 수명시간을 계산하였다. 운반자 수명시간은 빠른 소멸성분 $\tau_1$과 느린 소멸성분 $\tau_2$가 존재하고 빠른 성분 $\tau_1$의 PL 진폭이 약 80%로 느린 성분 $\tau_2$보다 우세하게 나타났다. 각 PL 피크에서의 운반자 수명시간 $\tau_1$은 ~1 ns로 성장온도에 따른 변화는 관찰되지 않았다. 또한 방출파장이 1400 nm에서 1480 nm까지 PL 피크 근처에서 운반자 수명시간은 거의 일정하게 나타났다. Be-doped 시료의 PL 피크는 1236 nm에서 나타나며, Si-doped 시료는 1288 nm, undoped 시료는 1430 nm에서 PL 피크가 측정되었다. PL 피크에서 PL 소멸곡선은 Be-doped 시료가 가장 빨리 감소하였으며, Si-doped 시료가 가장 길게 나타났다. 이러한 결과로부터 $In_{0.64}Al_{0.36}Sb$의 광학적 특성은 성장 온도, dopant type, 도핑 농도에 따라 변화하는 것을 확인하였다.

  • PDF

Silicon doping effects on the optical properties of $In_{0.64}Al_{0.36}Sb$ grown on GaAs substrates

  • Kim, Hui-Yeon;Ryu, Mi-Lee;Im, Ju-Yeong;Sin, Sang-Hun;Kim, Su-Yeon;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.159-159
    • /
    • 2010
  • 본 논문은 테라헤르츠 소스로 저온 InGaAs를 대체하기 위한 저온 $In_{0.64}Al_{0.36}Sb$의 실리콘(Si) 도핑 농도에 따른 광학적 특성 변화를 photoluminescence (PL)과 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. $In_{0.64}Al_{0.36}Sb$ 시료는 분자선 엑피탁시 (molecular beam epitaxy)법으로 GaAs 기판 위에 약 $420^{\circ}C$에서 $3.7\;{\mu}m$ 두께 성장하였다. Si은 $In_{0.64}Al_{0.36}Sb$ 시료에서 도핑 농도가 낮을 때는 어셉터(acceptor)로 작용하다가 도핑 농도가 증가함에 따라 도너(donor)로 작용하였다. 본 연구에 사용한 $In_{0.64}Al_{0.36}Sb$ 시료의 Si 도핑 농도는 $4.5{\times}10^{16}\;cm^{-3}$ (n형), $4{\times}10^{16}\;cm^{-3}$ (n형), $8{\times}10^{15}\;cm^{-3}$ (n형), $1{\times}10^{15}\;cm^{-3}$ (p형), $4{\times}10^{14}\;cm^{-3}$ (p형)인 다섯 개의 시료를 사용하였다. Si 도핑한 시료의 PL 피크는 undoped 시료보다 약 100-200 nm 단파장에서 나타나고 PL 세기도 크게 증가하였다. 그러나 Si 도핑 농도가 가장 낮은 n형과 p형 시료의 PL 피크가 가장 짧은 파장 (높은 에너지)에 나타나고 도핑 농도가 증가함에 따라 장파장으로 이동함을 보였다. n형 시료의 도핑 농도가 $8{\times}10^{15}\;cm^{-3}$에서 $4.5{\times}10^{16}\;cm^{-3}$로 증가하였을 때 PL 피크는 1232 nm에서 1288 nm까지 장파장쪽으로 이동하였으며, p형 시료는 도핑 농도가 $4{\times}10^{14}\;cm^{-3}$에서 $1{\times}10^{15}\;cm^{-3}$로 증가하였을 때 PL 피크가 1248 nm에서 1314 nm로 이동함을 보였다. 또한 시료 온도에 따른 PL 결과는 온도가 증가함에 따라 PL 피크는 장파장으로 이동하면서 PL 세기는 급격하게 감소하고 약 100 - 150 K에서 소멸하였다. 그러나 ~1500 nm 이상 장파장 영역에 매우 넓은 새로운 피크가 나타났으며 온도가 증가함에 따라 PL 세기가 증가함을 확인하였다. Si 도핑 농도에 따른 운반자 수명시간 변화를 TRPL을 이용하여 측정하였다. 운반자 수명시간은 double exponential function을 이용하여 얻었다. Si 도핑 시료의 운반자 수명시간이 undoped 시료에 비해 매우 길게 나타났으며, Si 도핑 시료에서는 p형 시료들보다 n형 시료들의 운반자 수명시간이 길게 나타났다. PL 방출파장에 따른 운반자 수명시간은 Si 도핑 농도에 따라 다르게 나타났다. 이러한 PL과 TRPL 결과로부터 $In_{0.64}Al_{0.36}Sb$의 발광 특성 및 운반자 동역학은 Si 도핑에 크게 영향을 받는다는 것을 확인하였다.

  • PDF

Structurization in Community Composition and Diversity Pattern of Soil Seed Banks in Gwangneung Forest, South Korea (한국 광릉숲 매토종자에서 군집 종조성 및 다양성 양상의 구조화)

  • Kim, Han-Gyeol;Oh, Seung-Hwan;Cho, Yong-Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.577-589
    • /
    • 2021
  • Soil seed bank community contributes to the long-term conservation of plant diversity and vegetation dynamics, and their decreasing diversity and density with soil depth provide critical perspectives (deterministic and stochastic) for understanding the community disassembly process. We analyzed changes in species composition and diversity and structuring patterns by soil layer (top and bottom), including surface vegetation, in Gwangneung Forest, a mature forest with a vegetation climate in the temperate central part of the Korean Peninsula. From two layers of soil collected with a vertical difference of 10 cm, 934 specimens of 27 families, 40 genera, 44 species, three varieties, and 47 taxa, germinated. Although species diversity and germination density decreased in most comparative characteristics, including growth type, there was no statistical significance due to large deviations. Within-group variability of species composition was similar in the upper and lower soils, as was the decline pattern in co-occurred species (ζ-diversity) and change in species retention probability. The structuring process of the community composition in the two soil layers was fitted with an exponential correlation rather than a power function, demonstrating the dominance of the stochastic process. The pattern in diversity and species turnover according to soil depth in Gwangneung Forest was discovered to be structured by stochastic random events, such as seed vertical movement rather than interaction with trait characteristics.

Quantification of Chloride Diffusivity in Steady State Condition in Concrete with Fly Ash Considering Curing and Crack Effect (재령 및 균열효과를 고려한 플라이애시 콘크리트의 정상상태 염화물 확산 특성의 정량화)

  • Yoon, Yong-Sik;Cheon, Ju-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • In case of the cracks in concrete, the penetration of deterioration ions such as chloride ions in to cracks is accelerated. According to the penetration of chloride ions, structural and durability problems to RC(Reinforced Concrete) structures are caused. In this study, the accelerated chloride diffusion coefficient which is in steady state is evaluated for 2 year aged normal and high strength FA(Fly Ash) concrete, after a range of crack depths are induced up to 1.0 mm in 56 aged day. Considering crack effect by linear regression analysis, high strength concrete has slightly less increasing ratio of diffusion coefficient by crack than normal strength concrete, and diffusion coefficient increases non-linearly as crack width is increased. Also, In two types of concrete, crack effect decrease as the curing period increase. In the case of quantifying crack and curing effect by using exponential function form, the coefficients of determination are higher than those of linear regression analysis. Under steady state, it is thought that there is not a high correlation between the crack effect and the curing effect, and considering the two independent effects, it is believed that reasonable prediction equation for diffusion of concrete with crack can be proposed.

Development of Ingrowth Estimation Equations for Pinus densiflora in Korea Derived from National Forest Inventory Data (국가산림자원조사 자료를 이용한 소나무의 진계생장 추정식 개발)

  • Moon, Ga Hyun;Yim, Jong Su;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.402-411
    • /
    • 2018
  • This study was conducted to develop ingrowth estimation equations on Pinus densiflora found in Gangwon Province and in the center of Korean Peninsula, based on the National Forest Inventory (NFI)'s permanent sampling plot data. For this study, identical sampling plots in $5^{th}$ and $6^{th}$ NFI data were collected in order to identify ingrowth amounts for the last 5 years. Following two-stage approaches in developing the ingrowth estimation equations, the logistic regression model was used in the first stage to estimate the ingrowth probability. In the second stage, regression analysis on sampling plots with ingrowth occurrence was used to estimate the ingrowth amount. A candidate model was finally selected as an optimal model after a verification based on three evaluation statistics which include mean difference (MD), standard deviation of difference (SDD) and standard error of difference (SED). In results, a logistic regression model based on the number of sampling plot which did not result in ingrowth (model VI), was selected for an ingrowth probability estimation equation and exponential function including the species composition (SC) variable was optimal for an ingrowth estimation equation (model VII). The ingrowth estimation equations developed in this study also evaluated the estimation ability in various forest stand conditions, and no particular issue in fitness or applicability was observed.

Analysis of solute transport in rivers using a stochastic storage model (확률론적 저장대모형을 이용한 하천에서의 물질혼합거동 해석)

  • Kim, Byunguk;Seo, Il Won;Kwon, Siyoon;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.335-345
    • /
    • 2021
  • The one-dimensional solute transport models have been developed for recent decades to predict behavior and fate of solutes in rivers. Transient storage model (TSM) is the most popular model because of its simple conceptualization to consider the complexity of natural rivers. However, the TSM is highly dependent on its parameters which cannot be directly measured. In addition, the TSM interprets the late-time behavior of concentration curves in the shape of an exponential function, which has been evaluated as not suitable for actual solute behavior in natural rivers. In this study, we suggested a stochastic approach to the solute transport analysis. We delineated the model development and model application to a natural river, and compared the results of the proposed model to those of the TSM. To validate the proposed model, a tracer test was carried out in the 4.85 km reach of Gam Creek, one of the first-order tributaries of Nakdong River, South Korea. As a result of comparing the power-law slope of the tail of breakthrough curves, the simulation results from the stochastic storage model yielded the average error rate of 0.24, which is more accurate than the 14.03 and 1.87 from advection-dispersion model and TSM, respectively. This study demonstrated the appropriateness of the power-law residence time distribution to the hyporheic zone of the Gam Creek.

Measurement and analysis of PM10 and PM2.5 from chimneys of coal-fired power plants using a light scattering method (광산란법을 이용한 국내 석탄화력발전소 굴뚝에서 배출되는 PM10, PM2.5 측정 및 분석)

  • Shin, Dongho;Kim, Younghun;Hong, Kee-Jung;Lee, Gunhee;Park, Inyong;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.131-140
    • /
    • 2020
  • Air pollutants emitted from chimneys of coal-fired power plants are considered to be a major source of fine particulate matter in the atmosphere. In order to manage fine particle in the chimney of a coal-fired power plant, it is necessary to know the concentration of fine particle emitted in real time, but the current system is difficult. In this study, a real-time measurement system for chimney fine particle was developed, and measurements were performed on six coal-fired power plants. Through the measurements, the mass concentration distribution according to the particle size could be secured. All six chimneys showed bimodal distribution, and the count median diameters of each mode were 0.5 and 1.1 ㎛. In addition, it was compared with the gravimetric measurement method, and it was determined that the relative accuracy for PM10 was within 20%, and the value measured using the developed measuring instrument was reliable. Finally, three power plants were continuously measured for one month, and as a result of comparing the concentration of PM10 according to the amount of power generation, it was confirmed that the PM10 discharged from the chimney increased in the form of an exponential function according to the amount of power generation.