• Title/Summary/Keyword: Explosive terror

Search Result 22, Processing Time 0.025 seconds

Analysis on the Risk of Explosive Terror in Domestic Buildings (국내 건물의 폭발물 테러 위험도 요인 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • According to the global status of terroristic acts occurred from 2002 to 2010, 10,431(nearly 52.2%) of 19,946 cases have happened by bomb blasts, and 10,431(nearly 52.2%) of weapons used for terrorism were explosive substances Therefore, this study analyzed the terrorism risks of buildings according to height through FEMA 455 - rapid visual screening. As a result, the higher the building is, the higher the terror risk gets. It shows that total risk increases proportionally to buildings's height. In case of buildings over 100 meter high, the total risk is most affected by threat items. According to the risk of explosion associated with the scenario analysis, buildings over 100 meter high have high risks of Internal-Explosive.

Explosive-Terror Risk Curve by RVS (RVS에 의한 폭발물테러 위험도 곡선)

  • Do, Ki-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • Since the terrorist attacks 9.11 in 2001, the public places such as subway, department stores or office buildings have become a target of terror in major public facilities. In this paper, for the prevention of terrorist attack in domestic building, the assessments of terror risk were conducted and their relationship with building heights was discussed through FEMA 455-Rapid Visual Screening(RVS). Explosive terror risk tends to increase rapidly with building heights(H<230m), showing the correlation coefficient between total risk and building heights(H<230m) is 0.93. In addition, The average of consequences is 8.47 and that of' threat is 8.95. Vulnerability is found to be 6.62 in average.

Comparison on Terror Risk of Large Space Structures and High-rise Buildings in Korea (국내 대공간 건축물과 고층 건축물의 테러위험도 비교)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Since the 1980s, the number of large space buildings in Korea has consistently been increasing due to large scale international competitions such as the Olympics and the World Cup, demands for environmental improvement, and development of structural systems. Due to these reasons, this paper conducted a comparative analysis on terrorism risk factors of large space structure and skyscrapers in Korea. The results suggest that the total risk level of high-rise and large space structure was "medium level risk" and that the terrorism risk level for large space structure was as high as that for high-rise buildings. As it relates to the risk levels depending on scenarios, terrorism risks to large space structure were higher than high-rise buildings in the "internal explosion" and "internal intrusion" categories. And the results of analyzing explosion-related scenarios except for CBR suggest that terrorism risks to large space structure were highest when it comes to Internal-Explosive followed by Internal-Intrusion and Explosive-Zone I; and the results showed a regular pattern. On the other hand, in the case of high-rise buildings, terrorism risks were highest in Internal-Explosive followed by Explosive-Zone I and Explosive-Zone II; and the results showed an irregular pattern.

Terror Risk Analysis of High-rise Building by Rapid Visual Screening (Rapid Visual Screening을 통한 국내 고층건물의 테러 위험도 분석)

  • Ji, Jung-Hwan;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.55-62
    • /
    • 2011
  • While frequency of occurrence of terrorism has recently increased, it intensively occurs in buildings that many unspecified persons gather. Terrorism which occurs in high-rise buildings causes a lot of damage. It is necessary for design approach to reduce terrorism damage from explosive of buildings. Terror risk analysis of domestic tall and high-rise buildings is evaluated by fema 455, Rapid Visual Screening which is found to be comparatively simple and practicable. Common risk factors of terrorism in domestic buildings were investigated. The results of terror risk assessment of all buildings are found to be a medium risk score, Main reason is that domestic tall or high-rise buildings have similar external-environmental factors.

Contrast Analysis for CBRN attacks on educational research and best practices (테러대비를 위한 CBRNE교육 선진사례 분석에 관한 연구)

  • Kim, Tae hwan;Park, Dae woo;Hong, Eun sun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.78-100
    • /
    • 2009
  • This study is to protect peoples' life, minimize the property damage by coping with threats quickly and take more preventive measures in advance against nuclear bomb, CBR, and potential explosive. For this, CBRNE(Chemical, Biological, Radiological, Nuclear, Explosive) program research was used. Thanks to advance in technology, terrorist groups and even individuals make or keep nuclear and CBR weapons. And also it's likely that disaster and threats from a toxic gas, acute pathogens, accidents in the nuclear power plants and a high explosive could be happened a lot. Recently more organized terrorist groups maintain random attacks for unspecified individuals and also it's highly likely that a large-scale terrorist attack by WMD and CBRNEwill be done. To take strict measures against CBRNE attacks by terrorists is on the rise as an urgent national task. Moreover biological weapons are relatively easy and inexpensive to obtain or produce and cause mass casualties with a small amount. For this reason, more than 25 countries have already possessed them. In the 21 st century, the international safety environment marks the age of complicated threats : transnational threats such as comprehensive security and terror, organized crime, drug smuggling, illegal trade of weapons of mass destruction, and environmental disruption along with traditional security threats. These cause military threats, terror threats, and CBRNE threats in our daily life to grow. Therefore it needs to come up with measures in such areas as research development, policy, training program. Major industrial nations on CBRNE like USA, Canada, Switzerland, and Israel have implemented various educational programs. These researches could be utilized as basic materials for drawing up plans for civil defense, emergency services and worldwide countermeasures against CBRNE.

  • PDF

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

A Countermeasure to Terrorism of Japanese Governmental Organization and Implication to Korea (일본 정부기관의 테러대응책과 한국에의 함의)

  • Kwon, JeongHoon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.423-428
    • /
    • 2013
  • This study aims at countering terror. So, this study explores an implication to Korea through the countermeasure of Japanese organizational direction to countermeasure. As a result, first, some countermeasures on IED need to be sought. Second, a chance of domestic terrorism growing should be checked. Third, safety of major facilities needs to be saught. Finally, Public Service System on Education and Information for Counterterrorism must be built.

Impact of a shock wave on a structure strengthened by rigid polyurethane foam

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.569-585
    • /
    • 2013
  • The use of the rigid polyurethane foam (RPF) to strengthen sandwich structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen sandwich steel structure under blast load. The sandwich steel structure is assembled to study the RPF as structural retrofitting. The filed blast test is conducted. The finite element analysis (FEA) is also used to model the sandwich steel structure under shock wave. The sandwich steel structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the numerical model. The RPF improves the sandwich steel structure performance under the blast wave propagation.

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

Impact of composite materials on buried structures performance against blast wave

  • Mazek, Sherif A.;Wahab, Mostafa M.A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.589-605
    • /
    • 2015
  • The use of the rigid polyurethane foam (RPF) to strengthen buried structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen the buried structures under blast load. The buried structure is considered to study the RPF as structural retrofitting. The Guowei model (Guowei et al. 2010) is considered as a case study. The finite element analysis (FEA) is also used to model the buried structure under shock wave. The buried structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the Guowei model and the proposed numerical model. The RPF improves the buried structure performance under the blast wave propagation.