• Title/Summary/Keyword: Explosive eruption

Search Result 26, Processing Time 0.021 seconds

Interpretion of Transition between Explosive and Effusive Eruptions from Microlite Textural Analyses in the Albong Lava Dome, Ulleung Island, Korea (울릉도 알봉 용암돔의 미정 조직분석으로부터 폭발성 및 분류성 분출 간의 전환 해석)

  • Hwang, Sang Koo;Kim, Ki Beom;Son, Young Woo;Hyeon, Hye Weon
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.553-564
    • /
    • 2020
  • Transition between explosive and effusive eruption in Ulleung Island is observed in the Nari Scoria Deposits and Albong Trachyandesite (lava dome) origined by dome-building eruption and may be related to factors such as magma influx, ascent rate and degassing. However, the interpretation of them has not been resolved yet because the interaction between these factors is not complex but also the resulting behaviour during eruption is unpredictable. This paper focuses on the explosive and effusive activity perceived during building the Albong lava dome in Nari caldera. Samples were collected along with time from the scoria deposits and lava dome, linked to eruption stage and style of activity. Textures of groundmass feldspar microlites from these samples are quantitatively analyzed, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size. The microlite textures show that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. Transition between explosive and effusive eruption was driven by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in a cycle of effusive and explosive eruption.

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea (울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석)

  • Hwang, Sang Koo;Lee, So-Jin;Han, Kee Hwan
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.513-527
    • /
    • 2018
  • We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.

2020 Taal Volcano Eruption (필리핀 따알 화산의 2020년 분화 해설)

  • Yun, Sung-Hyo;Chang, Cheolwoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • An eruption of Taal Volcano in the Philippines began on January 12, 2020. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) subsequently issued an Alert Level 4, indicating that "a hazardous explosive eruption is possible within hours to days." It was a phreatic eruption and phreatomagmatic eruption from the main crater that spewed ashes to Calabarzon, Metro Manila, some parts of Central Luzon, and Pangasinan in Ilocos Region, resulting in the suspension of classes, work schedules, and flights. By January 26, 2020, PHIVOLCS observed inconsistent, but decreasing volcanic activity in Taal, prompting the agency to downgrade its warning to Alert Level 3. After February 14, Alert status was set to Level 2 because of overall decreasing trend of volcanic activities, but it does not mean that the threat of an eruption has disappeared. In addition, the Alert Level can be raised to Alert Level 3 if there is a symptom of increasing unrest at any time.

Volcanic Forms and Eruption Processes of Laoheishan and Huoshaoshan in the Wudalianchi Volcanics, NE China (중국 오대연지 라오헤이산과 후오샤오산의 화산 형태와 분출 과정)

  • Hwang S.K.;Jin X.;Ahn U.S.
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.251-263
    • /
    • 2005
  • Modern volcanoes, Laoheishan and Huoshaoshan, have erupted during $1720\~1721$ in the Wudalianchi volcanic group, NE china. They comprise scoria and spatter cones that consist of potassium-rich phono-tephritic pyroclastic deposits and lavas, and include wide lava flow fields. The Laoheishan scoria cone is a polygenetic multiple volcano that overlaps earlier and later edifices with more complicated internal structures produced in greater scale and in earlier time than the Huoshaoshan. There is a funnel-shaped crater in the center of the later edifice of the Laoheishan scoria cone. The Huoshaoshan spatter cone is a monogenetic simple volcano with a central pit crater. The volcanic sequences indicate eruption processes that followed a repeated pattern that progressed through 5 stages of explosive and effusive eruption including lava fountains and Strombolian eruptions in the Laoheishan, and a recognizable pattern of 2 stages that started with Strombolian eruption and progressed through lava effusion in the Huoshaoshan.

Volcanisms and igneous processes of the Samrangjin caldera, Korea (삼랑진 칼데라의 화산작용과 화성과정)

  • 황상구;김상욱;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.147-160
    • /
    • 1998
  • The Samrangjin Caldera, a trapdoor-type, formed by the voluminous eruption of the silicic ash-flows of the Samrangjin Tuff which is above 630m thick at the northern inside of the caldera and thinnerly 80m at the southern inside. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was ejected to form the Samrangjin Tuff. The explosive eruptions began with phreatoplinian eruption, progressed through small plinian eruption and transmitted with ash-flow eruption. During the ash-flow eruption, contemporaneous collapse of the roof of the chamber resulted in the formation of the Samrangjin caldera, a subcircular depression subsiding above 550m deep. During postcaldera volcanism after the collapse, flow-banded rhyolite was emplaced as cental plug along the central vent and ring dikes along the caldera margins. Subsequently rhyodacite porphyry and dacite porphyry were emplaced along the inner side of the ring dike. After their emplacement, residual magma was emplaced as a hornblende biotite granite stock into the southwestern caldera margin. In the northeastern part, the eastern dikes were cut final intrusions of granodioritic to granitic composition along the fault zone of $^{\circ}$W trend.

  • PDF

The Numerical Simulation of Volcanic Ash Dispersion at Aso Caldera Volcano using Ash3D Model (Ash3D 모델을 이용한 아소 칼데라 화산에서의 화산재 확산 수치모의 연구)

  • Chang, Cheolwoo;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.115-128
    • /
    • 2017
  • Aso caldera volcano is located in central Kyushu, Japan which is one of the largest caldera volcanoes in the world. Nakadake crater is the only active central cone in Aso caldera. There was an explosive eruption on October 8, 2016, the eruption column height was 11 km, and fallout ash was found 300 km away from the volcano. In this study, we performed a numerical simulation to analyze the ash dispersion and the fallout tephra deposits during this eruption using Ash3D that was developed by the United States Geological Survey. The result showed that the ash would spread to the east and northeast, that could not affect the Korean peninsula, and the volcanic ash was deposited at a place from a distance of 400 km or more in the direction of east and northeast. The result was in close agreement with the identified ashfall deposits. Ash3D can be useful for quick forecast for the effects of hazards caused by volcanic ash.

DEFORMATION OF AUGUSTINE VOLCANO, ALASKA, 1992-2006, MEASURED BY ERS AND ENVISAT SAR INTERFEROMETRY

  • Lee, Chang-Wook;Lu, Zhong;Kwoun, Oh-Ig
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.582-585
    • /
    • 2006
  • Augustine volcano is an active stratovolcano located southwest of Anchorage, Alaska. Augustine volcano experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. To measure ground surface deformation of Augustine volcano, we applied satellite radar interferometry with ERS-1/2 and ENVISAT SAR images acquired from three descending and three ascending satellite tracks. Multiple interferograms are stacked to reduce artifacts due to changes in atmospheric condition and retrieve temporal deformation sequence. For this, we used Least Square (LS) method for reducing atmospheric effects and Singular Value Decomposition (SVD) method for the retrieval of a temporal deformation sequence. Interferograms before 2006 eruption show about 3 cm/year subsidence by contraction of pyroclastic flow deposits from the 1986 eruption. Interferograms during 2006 eruption do not show significant deformation around volcano crater. Interferograms after 2006 eruption show again a several cm subsidence by compaction and contraction of pyroclastic flow deposits for a few months. This study demonstrates that satellite radar interferometry can monitor deformation of Augustine volcano to help understand the magma plumbing system driving surface deformation.

  • PDF

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

SAR Measurements of Surface Displacements at Augustine Volcano, Alaska, Associated with the 1986 and 2006 Eruption

  • Lee, C.W.;Jung, H.S.;Won, J.S.;Lu, Z.;Kwoun, O.I.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.401-404
    • /
    • 2007
  • Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. The observed surface displacements from satellite radar interferometry were compared with GPS data. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano.

  • PDF

Selecting Hazardous Volcanoes that May Cause a Widespread Volcanic Ash Disaster to the Korean Peninsula (한반도에 광역화산재 재해를 발생할 수 있는 위험화산의 선정)

  • Yun, Sung-Hyo;Choi, Eun-Kyeong;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.346-358
    • /
    • 2016
  • This study built the volcano Data Base(DB) of 289 active volcanoes around the Korean Peninsula, Japan, China (include Taiwan), and Russia Kamchatka area. Twenty nine more hazardous volcanoes including Baekdusan, Ulleungdo and 27 Japanese volcanoes that can cause a widespread ash-fall on the Korean peninsula by potentially explosive eruption were selected. This selection was based on the presence of volcanic activity, whether or not containing dangerous explosive eruption rock types, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) 4 or more. The results of this study are utilized for screening high-risk volcanoes that may affect the volcanic disaster caused by a widespread fallout ash. By predicting the extent of spread of ash caused by these hazardous volcanic activities and by analyzing the impact on the Korean peninsula, we suggest that it should be used for helping to predict volcanic ash damages and conduct hazards mitigation research as well.