• 제목/요약/키워드: Explosion energy

검색결과 404건 처리시간 0.03초

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.

리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석 (Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries)

  • 임승현;이경렬;김남훈;김동언;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.327-332
    • /
    • 2021
  • Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

HCNG 보급을 위한 안전기술 및 기준 연구

  • 방효중
    • 기술사
    • /
    • 제45권6호
    • /
    • pp.20-27
    • /
    • 2012
  • World has become interested in the development of new dean energy because of oil prices rise and global warming due to carbon dioxide emissions. This study evaluated the safety of the refueling infrastructure for hydrogen, CNG and HCNG(hydrogen blended natural gas) which recently take center stage as a clean fuel. The risk of fuel was evaluated by 3D computational fluid dynamics program for gas dispersion and explosion. Hydrogen is higher than the CNG explosion overpressure and shows rapid spread. On the other hand, CNG and 30% HCNG showed quite similar characteristics. HCNG slightly rises in risk than the CNG, but HCNG is safe compared to hydrogen.

  • PDF

고밀도 폴리에틸렌 분진의 열분해성과 착화에너지 (Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder)

  • 한우섭;이정석
    • 한국가스학회지
    • /
    • 제18권3호
    • /
    • pp.31-37
    • /
    • 2014
  • 본 연구에서는 자료 제공을 목적으로 국내 분진폭발사고에서와 동일한 고밀도 폴리에틸렌(high-density polyethylene, HDPE ) 분진을 사용하여 열분해성과 착화에너지를 실험적으로 조사하였다. 폭발 민감도를 측정하기 위하여 시차주사열량계(differential scanning calorimeter, DSC), 열중량분석기(thermo-gravimetric analysis, TGA) 및 최소착화에너지(minimum ignition energy, MIE) 측정장치를 사용하였다. HDPE의 체적기준 평균입경은 $61.6{\mu}m$가 얻어졌으나, 입자 크기에 따른 입자 수밀도(particle number density) 분석에서는 $0.4{\sim}4{\mu}m$의 미세 입자가 98% 이상의 비율을 갖는 것으로 나타났다. TGA 및 DSC 측정결과로부터 HDPE는 $380{\sim}490^{\circ}C$의 온도 구간에서 발화가 일어날 수 있음을 알 수 있었고, MIE는 $1200{\sim}1800g/m^3$의 HDPE의 농도 범위에서 1 mJ 이하로 측정되었는데, 이는 입자 수밀도 기준에 따른 $0.4{\sim}4{\mu}m$의 미세 입자의 비율(98 %)이 매우 높았던 것이 원인으로 판단된다.

원자로 물질의 증기폭발에서 고화 입자 크기 분석 (Analyses of Size of Solidified Particles in Steam Explosions of Molten Core Material)

  • 박익규;김종환;민병태;홍성완
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1051-1060
    • /
    • 2010
  • 고화 입자 크기의 관점에서 TROI 용융물-냉각수 반응 실험의 결과에 대한 물질 효과를 분석하였다. 고화 입자 크기를 분석하면 용융물-냉각수 반응에서 초기 조건, 혼합, 폭발을 기적으로 해석할 수 있다. 증기 폭발이 발생한 경우와 폭발이 발생하지 않는 경우의 고화 입자 크기를 분석한 결과 증기 폭발이 발생한 경우에는 미세 입자가 많고 비교적 큰 입자는 적은 것으로 나타났다. 또한, 혼합 과정에 대한 정보를 보존할 수 있는 증기 폭발이 발생하지 않은 용융물-냉각수 반응을 이용하여 용융물 입자 크기에 대한 물질 효과를 분석하였다. 증기 폭발이 잘 발생하는 용융물은 증기 폭발에 참여할 수 있는 큰 입자를 많이 포함하고 있었고, 증기 폭발이 잘 발생하지 않는 용융물은 증기 폭발보다는 냉각되기 쉬운 작은 입자 혹은 미세 입자를 많이 포함하고 있었다.

수중폭발에 의한 센서의 구조건전성 해석 (Structural Integrity Analysis of Underwater Acoustic Sensors due to Underwater Explosion)

  • 정재덕;홍석윤;길현권;송지훈;권현웅;전재진;서영수
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.597-604
    • /
    • 2013
  • Underwater acoustic sensors are significantly damaged from underwater explosion. The damage that affects sensor should be evaluated for its smooth operations and safety. For satisfying these objectives, it is necessary to obtain more accurate values of the pressure and the energy flux density by distance. This paper is divided into two part. First, to obtain more accurate value of the pressure and the energy flux density at each point, the simulation results and the reference values were compared. For fitting to the reference pressure and the reference energy flux density, the sizes of fluid and TNT model are corrected, and the comparison results show good agreements. Second, based on these results, the structural integrity of underwater sensor structure was analyzed when TNT located in 10 meters from underwater sensors structure. This simulation used the commercial software MSC/DYTRAN.

Ultrashort Neutron Generation by Coulomb Explosion

  • Nam, Sung-Mo;Han, Jae-Min;Kwon, Duck-Hee;Cha, Yong-Ho;Rhee, Yong-Joo;Lee, Byung-Chul
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 제16회 정기총회 및 동계학술발표회
    • /
    • pp.116-116
    • /
    • 2005
  • PDF

가스충전소에서 작업복의 정전기 안전관리에 관한 연구 (A Study on the Safety Management of the Electrostatic in Working Clothes at the Gas Station)

  • 이금환;정재희
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.39-44
    • /
    • 2009
  • In order to prevent fire and explosion due to the electrostatic discharge at the Gas Station etc. This result will be applied to standard in the future. Wearing the non-electrostatic removing wear, Charged voltage of human body is 3,980V(MIE is approximately 0.79mJ). There is a possibility of fire explosion because the MIE of LP gas is 0.25mJ. In accordance with using period(whasing times), Charged voltage is shown that propensity is increased. Electrostatic charge amount is upper standard($0.6{\mu}$C) of the hazard of electrostatic removing wear. There is a possibility of fire and explosion. Therefore, countermeasure and management are needed about gas station worker.

증기운 폭발의 위험성 평가를 위한 전문가 시스템의 구축 (Construction of Expert System for Hazard Assessment of Unconfined Vapor Cloud Explosion)

  • 함병호;손민일;김태옥;조지훈;이영순
    • 한국안전학회지
    • /
    • 제10권2호
    • /
    • pp.97-104
    • /
    • 1995
  • To evaluate readily the effect of unconfined vapor cloud explosion(UVCE) having high possibility of accident and risk in chemical industries, the expert system of UVCE was developed and its applicability on a real accident was analyzed. We found that the hazard of UVCE could be well evaluated from the TNT equivalency model and the empirical loss data produced by overpressure for chemical facilities. By using the developed expert system, the size of vapor cloud, the quantity of vaporization, the released energy, the overpressure range from explosion point, and the impact damage of each installation could be estimated respectively. Also, probable maximum loss and catastrophic loss potential for real accident( cyclohexane release in Flixborough Nypro company) were estimated and compared with damages of the accident. As a result, the developed expert system could be well applicable to real accident.

  • PDF

Effect of Electrical Parameters and Surrounding Gas on the Electroexplosive Tungsten Nanopowders Characteristics

  • Kwon, Young-Soon;Kim, Jin-Chun;Ilyin, Alexander P.;Nazarenko, Olga B.;Tikhonov, Dmitry V.
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2012
  • Tungsten nanopowders were produced by the method of wires electrical explosion in the different gases. The study of phase and dispersed composition of the powders was carried out. The influence of electrical parameters such as the value of energy input in wire and the arc stage of the explosion was discussed. The factors that make for decreasing the particles size are the lower pressure of surrounding gas and the use of addition of chemically reactive gas.