• Title/Summary/Keyword: Explosion Pressure

Search Result 464, Processing Time 0.024 seconds

A study of the hazard of fire and explosion due to electric charge by Gas-Solids flow in pipeline

  • Chung Jae Hee;Seo Dae Won;Koo Ja Hyeuk;Kim Sung Jun;An Heau Seak;Kim Joon Ho;Hong Sung Kyung;YAMAGUMA Mizuki;KODAMA Tsutomu
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.33-38
    • /
    • 2000
  • When fire and explosion accidents have occurred due to a leak of the flammable gas involving the LNG & LPG in an industrialized society, it is a very important problem. Accordingly, in this paper, we have compared and analyzed the occurrence transition and the electrostatic energy according to dust supplies and pressure variations for the electric charge due to the gas-solids of pipe flow. As the experimental results, if dust amounts and the initial pressure increased, electric charge in the pipe and the exit increased. The Specific charge of $Fe_2O_3$ increased proportionally if the initial pressure increased but if the quantity of dust increased, the specific charge decreased. Energy increased significantly as the dust amounts and the initial pressure increased. The possibility of fire and explosion exist in the measuring point(M 1) and the Faraday cage if natural gas and LPG were used.

  • PDF

A Study on Fire and Explosion Characteristics of Propane Gas (프로판가스의 화재 및 폭발 특성치에 관한 연구)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.33-39
    • /
    • 2006
  • For the safety design and operation of many gas process, it is necessary to know certain explosion limit, flash point, auto ignition temperature and minimum oxygen concentration of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of propane, explosion limit and autoignition temperature of combustion characteristics for propane were investigated. By using the literatures data, the lower and upper explosion limits of propane recommended 2.0 vol% and 10.0 vol%, respectively. Also autoignition temperatures of propane with ignition sources recommended $450^{\circ}C$ at the electrically heated cruicible fumace(the whole surface heating) and recommended about $960^{\circ}C$ at the local hot surface. The new equations for predicting the temperature and the pressure dependence of the explosion limits of propane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

Study on Explosion Behavior of Air-born Rice Bran Dusts according to Ignition Energy (점화에너지 변화에 따른 쌀겨분진의 폭발 거동에 관한 연구)

  • 김정환;김현우;현성호;백동현
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-32
    • /
    • 1999
  • We had investigated combustion pro야$\pi$ies of rice bran dusts. Decomposition of rice bran d dusts with temperature were investigated using DSC and the weight loss according to t temperature using TGA in order to find the thermal hazard of rice bran dusts, and the p properties of dust explosion in variation of their dust with the same particle size. Using H Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after m making dust disperse by compressed air, dust explosion experiments have been conducted by v varying concen$\sigma$ation and size of rice br뻐 dust. According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation 때d heating value for used particle size. But i initiation temperature of heat generation decreased with high heating rate whereas d decomposition heat increased with particle size. Also, the explosion pressure was increased as t the ignition energy increased and average maximum explosion pressure was 13.5 kgv'cnt for 5 BJ/60 mesh and 1.5 뼈Ie미 dust concentration.

  • PDF

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

A Study on the Mitigation of Vapor Explosions with Tin-Water Sytem (주석-물 시스템의 증기폭발 완화에 대한 연구)

  • Shin Y.S.;Kim J.H.;Hong S.W.;Song J.H.;Kim H.D.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.397-400
    • /
    • 2002
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain. So, KAERI launched a real experimental program called TROI using $UO_{2}$ and $ZrO_{2}$ to investigate the vapor explosion. Besides TROI tests, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A vapor explosion was observed while the amount of air bubble and water temperature were systematically varied The mass and temperature of tin are $50\;g\;and\;150^{\circ}C$, respectively. Water temperature is set to $24^{\circ}C\;and\;50^{\circ}C$. The void fraction of air bubble ranges from $0\;to\;10\;{\%}$. The strength of vapor explosion was measured using dynamic pressure sensors attached in reactor tube wall. as a function of void fraction. In addition, a high speed video filming up to 1,000 flame/sec was taken in order to visually investigate the behavior of the vapor explosion .

  • PDF

Effect of Non-uniform Concentration on Gas Explosion (불균일 농도가 가스 폭발에 미치는 영향)

  • Kim Sang Sub;Jang Gi Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.14-19
    • /
    • 2003
  • Generally the accident by gas explosion in the working place is occurred at the condition of non-uniform mixture rather than uniform one. This study could predict the explosion phenomenon of non-uniform mixture with model explosion chamber which realize various practical conditions As a result, the mixing level of gas in the chamber depends on discharge area and velocity when there is gas discharge in certain space. In addition, as non-uniform increases, explosion pressure and its increasing rate decrease. However, firing risk after the explosion flame by infrared heat increase due to the increase of residence time of flame.

  • PDF

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

Combustion Characteristics of a 1-Butanol Gel Fuel Droplet in Atmospheric Pressure Condition (상압조건에서 1-부탄올 젤 연료액적의 연소특성)

  • Nam, Siwook;Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Combustion characteristics of a 1-butanol gel fuel were studied in atmospheric pressure condition. The butanol gel fuel was manufactured by adding hydroxypropyl-methyl cellulose (HPMC) as a gellant and the effect of the gellant concentration was observed. The combustion process of a single butanol gel droplet was divided into 3 stages including droplet heating, microexplosion, and gellant combustion. The flame was distorted compared to butanol + water mixture because of micro-explosion during the combustion. Increase of gellant concentration delayed the droplet ignition, but the combustion rate was improved due to the mass ejection during the micro-explosion.

Topology Optimization of Reinforcement Pattern for Pressure-Explosion Proof Enclosure Door in Semiconductor Manufacturing Process (위상최적화 기법을 이용한 반도체 공정용 압력방폭형 외함 도어의 보강 패턴 최적화)

  • Yeong Sang Kim;Dong Seok Shin;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.56-63
    • /
    • 2023
  • This paper presents a method using finite element analysis and topology optimization to address the issue of overdesign in pressure-explosion proof enclosure doors for semiconductor manufacturing processes. The design conducted in this paper focuses on the pattern design of the enclosure door and its fixation components. The process consists of a solid-filled model, a topology optimization model, and a post-processing model. By applying environmental conditions to each model and comparing the maximum displacement, maximum equivalent stress, and weight values, it was confirmed that a reduction of about 13% in weight is achievable.

  • PDF