• Title/Summary/Keyword: Explainable

Search Result 161, Processing Time 0.03 seconds

Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service (설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델)

  • Chen, Biyao;Kang, KyungMo;Kim, JaeKyeong
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.

A Study on XAI-based Clinical Decision Support System (XAI 기반의 임상의사결정시스템에 관한 연구)

  • Ahn, Yoon-Ae;Cho, Han-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.13-22
    • /
    • 2021
  • The clinical decision support system uses accumulated medical data to apply an AI model learned by machine learning to patient diagnosis and treatment prediction. However, the existing black box-based AI application does not provide a valid reason for the result predicted by the system, so there is a limitation in that it lacks explanation. To compensate for these problems, this paper proposes a system model that applies XAI that can be explained in the development stage of the clinical decision support system. The proposed model can supplement the limitations of the black box by additionally applying a specific XAI technology that can be explained to the existing AI model. To show the application of the proposed model, we present an example of XAI application using LIME and SHAP. Through testing, it is possible to explain how data affects the prediction results of the model from various perspectives. The proposed model has the advantage of increasing the user's trust by presenting a specific reason to the user. In addition, it is expected that the active use of XAI will overcome the limitations of the existing clinical decision support system and enable better diagnosis and decision support.

Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning (CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류)

  • Yim, Ji Yeong;Do, Thanh Cong;Kim, Soo Hyung;Lee, Guee Sang;Lee, Min Hee;Min, Jung Joon;Bom, Hee Seung;Kim, Hyeon Sik;Kang, Sae Ryung;Yang, Hyung Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

Predicting Accident Vulnerable Situation and Extracting Scenarios of Automated Vehicleusing Vision Transformer Method Based on Vision Data (Vision Transformer를 활용한 비전 데이터 기반 자율주행자동차 사고 취약상황 예측 및 시나리오 도출)

  • Lee, Woo seop;Kang, Min hee;Yoon, Young;Hwang, Kee yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.233-252
    • /
    • 2022
  • Recently, various studies have been conducted to improve automated vehicle (AV) safety for AVs commercialization. In particular, the scenario method is directly related to essential safety assessments. However, the existing scenario do not have objectivity and explanability due to lack of data and experts' interventions. Therefore, this paper presents the AVs safety assessment extended scenario using real traffic accident data and vision transformer (ViT), which is explainable artificial intelligence (XAI). The optimal ViT showed 94% accuracy, and the scenario was presented with Attention Map. This work provides a new framework for an AVs safety assessment method to alleviate the lack of existing scenarios.

What are the benefits and challenges of multi-purpose dam operation modeling via deep learning : A case study of Seomjin River

  • Eun Mi Lee;Jong Hun Kam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.246-246
    • /
    • 2023
  • Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.

  • PDF

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

The Latest Trends in Attention Mechanisms and Their Application in Medical Imaging (어텐션 기법 및 의료 영상에의 적용에 관한 최신 동향)

  • Hyungseob Shin;Jeongryong Lee;Taejoon Eo;Yohan Jun;Sewon Kim;Dosik Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1305-1333
    • /
    • 2020
  • Deep learning has recently achieved remarkable results in the field of medical imaging. However, as a deep learning network becomes deeper to improve its performance, it becomes more difficult to interpret the processes within. This can especially be a critical problem in medical fields where diagnostic decisions are directly related to a patient's survival. In order to solve this, explainable artificial intelligence techniques are being widely studied, and an attention mechanism was developed as part of this approach. In this paper, attention techniques are divided into two types: post hoc attention, which aims to analyze a network that has already been trained, and trainable attention, which further improves network performance. Detailed comparisons of each method, examples of applications in medical imaging, and future perspectives will be covered.

Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning

  • Gil-Sun Hong;Miso Jang;Sunggu Kyung;Kyungjin Cho;Jiheon Jeong;Grace Yoojin Lee;Keewon Shin;Ki Duk Kim;Seung Min Ryu;Joon Beom Seo;Sang Min Lee;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1061-1080
    • /
    • 2023
  • Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.