• 제목/요약/키워드: Expiratory volume

검색결과 370건 처리시간 0.036초

Correlation between Respiratory Muscle Strength and Pulmonary Function with Respiratory Muscle Length Increase in Healthy Adults

  • Lee, Kyeongbong
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권4호
    • /
    • pp.398-405
    • /
    • 2021
  • Objective: The interest of clinicians is increasing due to the newly established medical insurance for pulmonary rehabilitation. Improvement of respiratory muscle strength and pulmonary function is an important factor in pulmonary rehabilitation, and this study aims to investigate the correlation between changes in respiratory muscle contraction thickness that can affect respiratory muscle strength and pulmonary function. Design: Cross-sectional observational study. Methods: Thirty-one subjects (male=13, female=18) participated in this study. The respiratory muscle strength was measured by dividing it into inspiratory/forced expiratory muscles, and the pulmonary function was measured by forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and FEV1/FVC. To evaluate the respiratory muscle length increase, in resting and concentric contraction thickness of diaphragm, external/internal oblique, transverse abdominis, and rectus abdominis were measured by using ultrasonography. Results: Inspiratory muscle strength showed a significant correlation with the length increase of the inspiratory muscle (r=0.368~0.521, p<0.05), and forced expiratory muscle strength showed a significant correlation with length increase of forced expiratory muscle (r=0.356~0.455, p<0.05). However, pulmonary function was not correlated with the length increase of the respiratory muscle. Conclusions: In this study, a correlation between respiratory muscle strength and respiratory muscle length increase was confirmed, but no correlation with the pulmonary function was found. It is considered that the respiratory muscle strength can be improved by increasing the respiratory muscle thickness through appropriate respiratory muscle training.

정상 성인 호흡기능에 대한 들숨 근 강화훈련과 날숨 근 강화 훈련의 효과 비교 (Compare the Effects of Inspiratory and Expiratory Muscle Strengthening Training of Normal Adult Respiratory Function)

  • 이연섭;오민영;박주연;이대희;이예진;정다혜;홍지연;홍하연;김현수
    • 대한통합의학회지
    • /
    • 제4권1호
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose : The purpose of this study was to examine the Compare the effects of inspiratory muscle strengthening training and expiratory muscle strengthening training of normal adult respiratory function. Method : In this study, we want to compare the effect of inspiratory muscle strengthening training(n=8) and expiratory muscle strengthening training(n=8) to target the normal adult 16 people. expiratory muscle strengthening training, was 25 minutes of training on the basis of the breathing image program that has been pre-recorded. inspiratory muscle strengthening training, use the power-breathe plus on the measured resistance value, was carried out for 25 minutes. Using the spirometer in order to examine the ability to breathe, FVC, FEV1, FEV1 / FVC, MVV was measured. Result : The results showd that in the breath muscle strengthening training FVC, FEV1, MVV increased statistically significantly. The inspiration muscle strength training FVC, FEV1, MVV was a statistically significant increase, FEV1/FVC decreased. There was no statistically significant difference between. Conclusion : In conclusion, both methods give the result of increasing the effective respiratory function. Inspiratory muscle strengthening training, the function of the lung is very limited to be used when and by us effectively and expiratory muscle strengthening training to increase the capacity of the lung is an effective way that will increase the volume.

Accuracy of maximal expiratory flow-volume curve curvilinearity and fractional exhaled nitric oxide for detection of children with atopic asthma

  • Park, Sang Hoo;Im, Min Ji;Eom, Sang-Yong;Hahn, Youn-Soo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권9호
    • /
    • pp.290-295
    • /
    • 2017
  • Purpose: Airway pathology in children with atopic asthma can be reflected by the concave shape of the maximal expiratory flow-volume (MEFV) curve and high fractional exhaled nitric oxide (FeNO) values. We evaluated the capacity of the curvilinearity of the MEFV curve, FeNO, and their combination to distinguish subjects with atopic asthma from healthy individuals. Methods: FeNO and angle ${\beta}$, which characterizes the general configuration of the MEFV curve, were determined in 119 steroid-naïve individuals with atopic asthma aged 8 to 16 years, and in 92 age-matched healthy controls. Receiver operating characteristic (ROC) curve analyses were performed to determine the cutoff points of FeNO and angle ${\beta}$ that provided the best combination of sensitivity and specificity for asthma detection. Results: Asthmatic patients had a significantly smaller angle ${\beta}$ and higher FeNO compared with healthy controls (both, P<0.001). For asthma detection, the best cutoff values of angle ${\beta}$ and FeNO were observed at $189.3^{\circ}$ and 22 parts per billion, respectively. The area under the ROC curve for the combination of angle ${\beta}$ and FeNO improved to 0.91 (95% confidence interval [CI], 0.87-0.95) from 0.80 (95% CI, 0.75-0.86; P<0.001) for angle ${\beta}$ alone and 0.86 (95% CI, 0.82-0.91; P=0.002) for FeNO alone. In addition, the combination enhanced sensitivity with no significant decrease in specificity. Conclusion: These data suggest that the combined use of the curvilinearity of the MEFV curve and FeNO is a useful tool to differentiate between children with and without atopic asthma.

The Effect of Neuromuscular Electrical Stimulation on Pulmonary Function, Gait Ability, and Quality of Life in Patients with Chronic Obstructive Pulmonary Disease

  • Kang, Jeong-il;Park, Jun-Su;Jeong, Dae-Keun
    • The Journal of Korean Physical Therapy
    • /
    • 제30권4호
    • /
    • pp.129-134
    • /
    • 2018
  • Purpose: This study aims to investigate the changes in pulmonary function, gait ability, and quality of life when NMES is applied along with CBE and to provide basic clinical data to be used in pulmonary rehabilitation guidelines for patients with COPD to treat patients with severe COPD. Methods: For this study, CBE and NMES of quadriceps femoris on both sides were applied to the experimental group (n=10), and only CBE was applied to the control group (n=10). For a pre-test, a 6-minute walk test was performed, and pulmonary function and health-related quality of life were measured. Moreover, an exercise program was applied to each group for 30 minutes per session, 5 times a week, for 6 weeks. After that, a post-test was conducted the same way as the pre-test. Results: In the within-group comparison, there were significant differences in forced expiratory volume in one second, 6-minute walk test and health-related quality of life between the experimental group and the control group (p<0.01)(p<0.05). In the between-group comparison, the experimental group showed an increase in forced expiratory volume in one second and 6-minute walk test (p<0.05) and showed a decline in health-related quality of life (p<0.05). Conclusion: The 6-weeks NMES program improved health-related quality in patients with severe COPD by increasing expiratory volume by reinforcing the function of quadriceps femoris. This finding implies that NMES could be an alternative mode for improving physical functions of patients with severe COPD, who cannot participate in a breathing exercise program or are reluctant to participate.

흉곽저항운동이 만성폐쇄성폐질환 환자의 1초간 노력성 호기량과 피로도에 미치는 영향 (Effects of Chest Resistance Exercise on Forced Expiratory Volume in One Second and Fatigue in Patients with COPD)

  • 강정일;정대근;박승규;이준희
    • The Journal of Korean Physical Therapy
    • /
    • 제23권2호
    • /
    • pp.37-43
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the effects of chest resistance exercise on Forced Expiratory Volume per second and on fatigue in patients with chronic obstructive pulmonary disease (COPD). Methods: In all, 62 male patients with COPD were included in this study. The experimental group included 32 patients who were treated with chest resistance exercise using the PNF technique with medication. The control group included 30 patients who were treated only with medication. Subjects were stratified into the 2 groups by randomized clinical sampling. Before the start of the experiment, forced expiratory volume at the first second (FEV1) and lactic acid were tested in both experimental and control groups. The experimental group did chest resistance exercise for 6 weeks, 4 times per week, 30 min per day, and the effects of this exercise in patients with COPD was determined by comparing the results of FEV1 and lactic acid tests before and after the experiment between and within the experimental and control groups. Results: There was a statistically significant within group difference for FEV1 MEAS and FEV1 %PRED. There was statistically significant control group of FEV1 MEAS and FEV1 %PRED There was a statistically significant difference in the experimental group for fatigue, comparing scores before and after the test. There was a statistically significant control group of fatigue, in comparison of between the groups of FEV1 MEAS, FEV1 %PRED, fatigue(p<0.01)(p<0.05). Conclusion: More research on COPD will be necessary for improving pulmonary function and reducing fatigue. Further studies on COPD will be required for improving pulmonary function and reducing of fatigue.

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • 대한물리의학회지
    • /
    • 제16권3호
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

The Effect of Body Composition on Pulmonary Function

  • Park, Jung-Eun;Chung, Jin-Hong;Lee, Kwan-Ho;Shin, Kyeong-Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권5호
    • /
    • pp.433-440
    • /
    • 2012
  • Background: The pulmonary function test is the most basic test method to diagnosis lung disease. The purpose of this study was to research the correlation of the body mass index (BMI), the fat percentage of the body mass (fat%), the muscle mass, the fat-free mass (FFM) and the fat-free mass index (FFMI), waist-hip ratio (WHR), on the forced expiratory volume curve. Methods: Between March and April 2009, a total of 291 subjects were enrolled. There were 152 men and 139 female (mean age, $46.3{\pm}9.92$ years), and they were measured for the following: forced vital capacity (FVC), forced expiratory volume at 1 second ($FEV_1$), and forced expiratory flow during the middle half of the FVC ($FEF_{25-75}$) from the forced expiratory volume curve by the spirometry, and the body composition by the bioelectrical impedance method. Correlation and a multiple linear regression, between the body composition and pulmonary function, were used. Results: BMI and fat% had no correlation with FVC, $FEV_1$ in male, but FFMI showed a positive correlation. In contrast, BMI and fat% had correlation with FVC, $FEV_1$ in female, but FFMI showed no correlation. Both male and female, FVC and $FEV_1$ had a negative correlation with WHR (male, FVC r=-0.327, $FEV_1$ r=-0.36; p<0.05; female, FVC r=-0.175, $FEV_1$ r=-0.213; p<0.05). In a multiple linear regression of considering the body composition of the total group, FVC explained FFM, BMI, and FFMI in order ($r^2$=0.579, 0.657, 0.663). $FEV_1$ was explained only fat% ($r^2$=0.011), and $FEF_{25-75}$ was explained muscle mass, FFMI, FFM ($r^2$=0.126, 0.138, 0.148). Conclusion: The BMI, fat%, muscle mass, FFM, FFMI, WHR have significant association with pulmonary function but $r^2$ (adjusted coefficient of determination) were not high enough for explaining lung function.

정상 성인의 신체조성과 폐 기능의 연관성 (Correlation between Body Composition and Lung Function in Healthy Adults)

  • 김현승;조성현
    • 대한통합의학회지
    • /
    • 제8권2호
    • /
    • pp.53-61
    • /
    • 2020
  • Purpose : We investigated the correlation between body composition and lung function in healthy adults. Methods : This study included 204 healthy adults in whom all measurements were obtained once, and all data were analyzed using the SPSS software for Windows, version 22.0. Pearson's correlation analysis was performed to determine the correlation between body composition (represented by the total body water, protein mass, soft lean mass, mineral mass, basal metabolic rate, fat-free mass, skeletal muscle mass, and body fat percentage) and lung function (represented by the forced vital capacity [FVC], forced expiratory volume in 1 second [FEV1], the FEV1/FVC ratio, maximum voluntary ventilation [MVV], maximum expiratory pressure [MEP], and the maximum inspiratory pressure [MIP]). All measurements were obtained by two investigators to improve reliability. A significance level of α=.05 was used to verify statistical significance. Results : Among the lung function measurements obtained in both men and women, the FVC, FEV1, MVV, and MIP were positively correlated with the total body water, protein mass, soft lean mass, mineral mass, basal metabolic rate, fat-free mass, and skeletal muscle mass in men (p<.05). The FEV1/FVC ratio was negatively correlated with the total body water, soft lean mass, mineral mass, basal metabolic rate, fat-free mass and the body fat percentage (p<.05). Notably, the FVC, FEV1, and MVV were positively correlated with the total body water, protein mass, soft lean mass, mineral mass, basal metabolic rate, fat-free mass, and skeletal muscle mass in women (p<.05). Conclusion : This study showed a significant correlation between body composition and lung function in healthy adults. In combination with future studies on lung function, our results can provide objective evidence regarding the importance of prevention of lung disease, and our data can be utilized in rehabilitation programs for patients with respiratory diseases.

Comparison of Pulmonary Function, Respiratory Muscle Strength, and Diaphragm Thickness between Underweight and Normal Adults

  • Ho-Jeong Shin;Ho-Hee Son
    • 대한물리의학회지
    • /
    • 제18권3호
    • /
    • pp.31-37
    • /
    • 2023
  • PURPOSE: This study aimed to investigate the relationship between being underweight and respiratory function indicators such as pulmonary function, respiratory muscle strength, and diaphragm thickness in normal adults without lung disease. METHODS: The participants in this experiment were thirty young adults. To compare the respiratory function between the underweight and normal weight individuals, 15 participants were selected from each of the underweight and normal weight groups based on body mass index. Respiratory function tests were conducted through pulmonary function tests and respiratory muscle strength tests. Diaphragm thickness was measure with ultrasonography, and physical characteristics were obtained from grip strength and waist circumference. An independent t-test was used to compare the averages of the parameters measured in the two groups. RESULTS: In the respiratory function tests between the two groups, statistically significant differences (p < .05) emerged in the ratio of the predicted forced vital capacity (%FVC), the ratio of the predicted forced expiratory volume in one second (%FEV1), maximal expiratory pressure (MEP), and diaphragm thickness at the functional residual capacity (FRC). There was no statistically significant difference in the forced vital capacity, forced expiratory volume in one second, maximal inspiratory pressure, diaphragm thickness at the total lung capacity, and thickening ratio (p > .05). CONCLUSION: Decreases in some variables of respiratory function, such as the %FVC, %FEV1, MEP, and diaphragm thickness at the FRC were observed in underweight subjects. However, it is difficult to determine whether it affected the overall respiratory function. Future studies are needed to clearly identify the relationship between being underweight and respiratory function.