• Title/Summary/Keyword: Experimental verification

Search Result 1,663, Processing Time 0.027 seconds

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Design and Flight Tests of a Drone for Delivery Service (무인 배송용 드론 설계 및 시험비행)

  • Kim, Seong-Hwan;Lee, Doo-Ki;Cheon, Jae-Hee;Kim, Seung-Jae;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.204-209
    • /
    • 2016
  • In this paper, an unmanned delivery service using drone was proposed and verified the feasibility. The multicopter has GPS for autopilot and a camera for remote control by human operator. The gripper for manipulation of delivery object was designed and evaluated. The multicopter flies to a given position automatically based on GPS, and approaches to the prepared delivery desk by remote control of human operator using the received image from the multicopter. GPS sensor verification and experimental PID tuning were performed to ensure the flight stability. The flight tests were carried out to verify the feasibility of delivery service.

A Study on the Improvement of Intermodulation Distortion for Multistage Microwave Two-port Networks (다단 마이크로파 2-포트 회로망의 상호변조 왜곡 개선에 관한 연구)

  • Eui Joon Park
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.50-57
    • /
    • 1994
  • The analysis of the two-tone intermodulation distortion of multistage two-ports with gain and mismatching losses is presented with simplified two-port analyses and statistical viewpoint. The uncertainty obtained from unknown phase angles of the intermodulation distortion signals to the system designer is reduced using stochastic process, hence improving the accuracy of the solution. Based on the dc power dependance of third-order intercept point of each stage, the new efficient method for improving the total intercept point is also suggested with only the relation of dc power and available power gain criteria. Experimental verification on specific amplifiers used for cellular mobile communication comparing predicted and measured intercept points for various power conditions is presented.

  • PDF

Pseudo-Dynamic Tests on Base-Isolated Liquid Storage Tanks (기초분리(基礎分離)된 액체저장(液體貯藏)탱크의 유사(類似) 동적실험(動的實驗))

  • Kim, Nam Sik;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.51-64
    • /
    • 1993
  • Base-isolated liquid storage tanks under seismic loading were tested by the Pseudo-dynamic test method. Substructuring technique in which a mixed integration method was adopted and the liquid tanks were simply modeled as a discrete system. This study gave experimental verification on the advantage of mounting the liquid tanks on base isolators in order to reduce the hydrodynamic forces on the tank wall.

  • PDF

Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations (탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석)

  • Ryou Hansun;Lee Myoung-Gyu;Kim Jihoon;Chung Kwansoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF

Damping Characteristic of Silicone Rubber-Filled Honeycomb Sandwich Composite (Silicone Rubber-Filled 허니콤 샌드위치 복합재료의 댐핑 특성)

  • Joe Chee-Ryong;Hao Huang;Kim Dong-Uk
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.290-293
    • /
    • 2004
  • In this paper a new sandwich composite is developed by injection silicone rubber into the honeycomb core. This composite material is designed to have a improved damping performance. For verification damping tests were conducted to the specimens with different stacked USNl25 carbon/epoxy prepreg laminate facesheets, $[0/90]_{4s},\;[0/45-45/90]_{2s},\;[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our original material design concept.

  • PDF

Low-Velocity Impact Damage Detection for Gr/Ep Laminates Using PVDF Sensor Signals (PVDF 센서신호를 이용한 Gr/Ep 적층판의 저속충격 손상탐지)

  • 박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.158-162
    • /
    • 2003
  • The PVDF(polyvinylidene fluoride) film sensor as one of smart sensors has good characteristics to detect the impact damages of composite structures. The capabilities of the PVDF film sensor for evaluating impact behaviors and damages of Gr/Ep laminates subjected to low-velocity impact were examined. From sensor signals, the specific wave-forms implying the damage were detected. The wavelet transform(WT) and Short Time Fourier Transform(STFT) were used to decompose the piezoelectric sensor signals in this study. The impact behaviors of Gr/Ep laminates were simulated and the impact forces were reconstructed using the sensor signals. Finally, the impact damages were predicted by finite element analysis with the reconstructed forces. For experimental verification, a series of low-velocity impact tests from low energy to damage-induced energy were carried-out. The extent of damage in each case was examined by means of ultrasonic C-scan and the measured damage areas were agreed well with the predicted areas by the F.E.A.

  • PDF

Structural Damage Identification by Using Dynamic Stiffness Matrix (동적강성행렬을 이용한 구조물의 손상검출기법)

  • Shin, Jin-Ho;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.635-640
    • /
    • 2001
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form from the dynamic stiffness equation of motion for a structure and then applied to a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions experimentally measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses and then experimental verification is conducted for a cantilevered beam with damage caused by introducing three slots.

  • PDF

Development of 2-Dim Lagrangian Hydrocode and Application to Large Deformation Problems (2차원 Lagrangian Hydrocode 개발 및 대변형 해석)

  • Lee, Min-Hyung;Kim, Sung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.409-415
    • /
    • 2003
  • The purpose of this paper is to develop the 2-Dim Lagrangian Hydrocode for the analysis of large deformations of solids with implementation of the contact algorithm. First, th e governing equations are discretized into a system of algebraic equations. For more accurate and robust contact force computation. the defense node contact algorithm was adopted and implemented. For the verification of the code developed, two cases are carried out; the Taylor-Impact test and two bodies impact. The von -Mises criterion is implemented into the code with the Shock equation of state. The simulation results show a good agreement compared with the published experimental data and results from the commercial code. It is necessary to implement several material models and failure models for applications to different impact and penetration problems.