• Title/Summary/Keyword: Experimental verification

Search Result 1,663, Processing Time 0.037 seconds

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface (실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증)

  • 김형우;서석환;신창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

Flexibility Analysis of 4-Bar Linkage Mechanism (4절 링크기구의 유연성 해석)

  • 조선휘;박종근;한성현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Strain Rate Self-Sensing for a Cantilevered Piezoelectric Beam

  • Nam, Yoonsu;Sasaki, Minoru
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.310-319
    • /
    • 2002
  • This paper deals with the analytical modeling, and the experimental verification of the strain rate self-sensing method using a hybrid adaptive filter for a cantilevered piezoelectric beam. The piezoelectric beam consists of two laminated lead zirconium titanates (PZT) on a metal shim. A mathematical model of the beam dynamics is derived by Hamilton's principle and the accuracy of the modeling is verified through the comparison with experimental results. For the strain rate estimation of the cantilevered piezoelectric beam, a self-sensing mechanism using a hybrid adaptive filter is considered. The discrete parts of this mechanism are realized by the DS1103 DSP board manufactured by dSPACE$\^$TM/. The efficacy of this method is investigated through the comparison of experimental results with the predictions from the derived analytical model.

Experimental Test for the Optimum Design of a Rotor Slot in Three Phase Inverter-fed Induction Motor (3상 인버터 구동 유도전동기의 회전자 1 슬롯 최적설계에 관한 실험)

  • Kim, J.W.;Kwon, B.I.;Kim, B.T.;Jo, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.131-134
    • /
    • 2002
  • The optimum design technology using combind F.E.M and eauivalent circuit is so fast and accurate that it can be applied to the optimum rotor design of an inverter-fed induction motor in high efficiency motor making industry. The optimum characteristics fer a rotor slot model of a 3 phase inverter-134 nduction motor was previously verified by a time-step F.E.M. In this paper, four verification models with the design variables near the optimum point are designed to chech whether the characteristics of a slot model presented is not less than those of the near models. The outputs of whole models are analyzed in a time-step Finite Element Method and compared in the experimental test. The economical and efficient selecting method of design variables fur the computer simulation and experimental test is presented in order to assure the optimum point.

  • PDF

Performance Analysis of a Combined Blade Savonius Wind Turbines

  • Sanusi, Arifin;Soeparman, Sudjito;Wahyudi, Slamet;Yuliati, Lilis
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • The Savonius wind turbine has a lower performance than other types of wind turbines which may attract more study focus on this turbine. This study aimed to improve wind turbine performance by combining a conventional blade with an elliptical blade into a combined blade rotor. The analysis was performed on three blade models in computational fluid dynamics (CFD) using ANSYS_Fluent Release 14.5. Then the results were verified experimentally using an open wind tunnel system. The results of the numerical simulation were similar to the experimental and showed that the combined blade rotor has better dragging flow and overlap flow than the conventional and elliptical blade. Experimental verification showed that the combined blade was to increase the maximum coefficient of power ($Cp_{max.}$) by 11% of the conventional blade and to 5.5% of the elliptical blade.

Experiments on Rope Vibrations using a Small-Scale Elevator Simulator (엘리베이터 시뮬레이터를 이용한 로프 진동 실험)

  • Yang, Dong-ho;Kwak, Moon K.;Kim, Ki-young;Baek, Jong-dae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.252-255
    • /
    • 2014
  • The elevator rope is easy to oscillate and continue vibrating because the rope structure is flexible and inner damping is small. The vibration of elevator rope is caused by the building vibration excited by external disturbances such as winds and earthquake. This paper is concerned with the experimental verification of the elevator rope vibrations using a small-scale simulator. The elevator rope vibration coupled with the building vibration was modelled using the energy method in the previous study. In this study, the natural frequencies of the elevator rope were computed using the theoretical model and compared to experimental results. Also, the time-responses of the rope vibration during the cage motion were measured by laser sensors and compared to the theoretical predictions. Experimental results are in good agreement with theoretical predictions.

  • PDF

A realization of simulator for reliability verification of the communication network PICNET-NP (PICNET-NP 통신망의 신뢰성 검증을 위한 시뮬레이션 구현)

  • Lee, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2212-2215
    • /
    • 2002
  • This dissertation suggests and implements a middle level network which is called PICNET-NP (Plant Implementation and Control Network for Nuclear Power Plant). PICNET-NP is based partly on IEEE 802.4 token-passing bus access method and partly on IEEE 802.3 physical layer. For this purpose a new interface a physical layer service translator, is introduced. A control network using this method is implemented and applied to a distributed real-time system. To verify the performance of proposed protocol experimental were carried out, and the following results are obtained. 1) proper initialization of the protocol. 2) normal receiving and transmission of data. 3) proper switching of transmission media in case of a fault condition on the one of transmission media. The proposed protocol exhibits the excellent performance in the experimental system. From the test results in the experimental system, the proposed protocol, PICNET-NP, can be used for the upgrading of a nuclear power plant and the distributed control system in the next generation of nuclear power plant.

  • PDF

Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels

  • Gulsan, Mehmet Eren;Cevik, Abdulkadir;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.279-304
    • /
    • 2015
  • In this study, reliability analyses of steel fiber reinforced concrete (SFRC) corbels based on stochastic finite element were performed for the first time in literature. Prior to stochastic finite element analysis, an experimental database of 84 sfrc corbels was gathered from literature. These sfrc corbels were modeled by a special finite element program. Results of experimental studies and finite element analysis were compared and found to be very close to each other. Furthermore experimental crack patterns of corbel were compared with finite element crack patterns and were observed to be quite similar. After verification of the finite element models, stochastic finite element analyses were implemented by a specialized finite element module. As a result of stochastic finite element analysis, appropriate probability distribution functions (PDF's) were proposed. Finally, coefficient of variation, bias and strength reduction (resistance) factors were proposed for sfrc corbels as a consequence of stochastic based reliability analysis.

An Interphalangeal Coordination-based Joint Motion Planning for Humanoid Fingers: Experimental Verification

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.234-242
    • /
    • 2008
  • The purpose of this paper is to verify the practical effectiveness of an interphalangeal coordination-based joint motion planning method for humanoid finger operations. For the purpose, several experiments have been performed and comparative experimental results are shown. Through the experimental works, it is confirmed that according to the employed joint motion planning method, the joint configurations for a finger's trajectory can be planned stably or not, and consequently the actual joint torque command for controlling the finger can be made moderately or not. Finally, this paper analyzes that the interphalangeal coordination-based joint motion planning method is practically useful for implementing a stable finger manipulation. It is remarkably noted that the torque pattern by the method is well-balanced. Therefore, it is expected that the control performance of humanoid or prosthetic fingers can be enhanced by the method.