• Title/Summary/Keyword: Experimental verification

Search Result 1,663, Processing Time 0.025 seconds

Retardation of Mobility of Gaseous VOCs in the Unsaturated Zone (불포화대중 휘발성 유기화합물 가스의 이동지연현상)

  • 이창수;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 1999
  • This study is on the mathematical modeling and its verification of the retardation phenomenon of gas migration in an unsaturated zone of very little moisture content The adsorption of VOCs onto the surface of the dry medium was taken into account, which has not been usually considered in the conventional models. The trichloroethylene(TCE) gas migration predicted from the mathematical model developed in this study fits the experimental results obtained from a dry glass-bead column and a dry silica sand column very well The model developed in this study gave much better prediction than did a coventional model.

  • PDF

Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper (Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증)

  • Kim, Y.H.;Woo, M.A.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.

Study for the prediction of damping and sound radiation characteristics due to structural shape changes (형상변경에 따른 구조물 감쇠특성 및 소음 특성 예측기술 연구)

  • Yoo, Ji Woo;Suh, Jin-Kwan;Lee, Sang Woo;Park, Jong Won;Park, Jun Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.332-335
    • /
    • 2014
  • Applying damping sheets or dampers (dynamic or mass) can reduce noise from vibrating structure as well as vibration. However, this approach requires increases of weight and cost. If one can reduce structural noise by only modifying the structural shape, which would be the best practice. It is natural that the noise characteristics change when the structure is modified, but the recent experiment on the sunroof frame showed that the modification of the frame beads results in change of the structural damping, so that the corresponding noise can be reduced. In this context, the reason why the structural damping and the related noise upon an impact excitation is changed is theoretically investigated. The change of dynamic and damping characteristics of the strip panels when their shapes are modified is experimentally found and it is shown that such behaviours can be predicted by computer simulation. Some experimental specimen, mainly strip-type panels, are examined for the numerical verification, and especially damping ratios are investigated.

  • PDF

Prediction and Evaluation of Power Output for Energy Scavengers using the Piezoelectric Material (압전 재료를 이용한 에너지 변환 시스템의 출력 파워 예측 및 평가)

  • Oh, Jae-Eung;Kim, Seong-Hyeon;Sim, Hyoun-Jin;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.827-830
    • /
    • 2006
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. In the generality of cases, these energy harvesting systems are used in the piezoelectric materials as mechanisms to convert mechanical vibration energy into electric energy. Through the piezoelectric materials, the ambient vibration energy could be used to prolong the power supply or in the ideal case provide endless energy f9r the devices. Therefore, the piezoelectric power harvesting cantilever beam is developed. Also, the output voltage and power are predicted in this study. We also discuss the developing system of the piezoelectric energy scavenger. An experimental verification of the model is also performed to ensure its accuracy.

  • PDF

Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System (마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구)

  • Kang, Kyung-Soo;Park, Ji-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Man;Kim, Yu-Sung;Kim, Myung-Kuk;Chen, Seung-Bae;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

Environmental Effects of DFDF Normal Operation (정상운전시 DFDF 시설의 환경영향평가)

  • 박장진;이호희;신진명;김종호;양명승
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.621-626
    • /
    • 2003
  • A DUPIC nuclear fuel is a newly developed fuel for CANDU reactors based on the concept of refabrication of spent PWR fuel by a dry process. Because a spent PWR fuel, a highly radioactive material, is used as a starting material, the experimental verification of DUPIC nuclear fuel fabrication requires an appropriate facility which should satisfy engineering requirements and guarantees safe operation. DUPIC nuclear fuel development team modified M6 hot-cell in IMEF to construct the dedicated facility(DFDF) for tile experiment. The experiment with spent PWR fuel have been conducted since January of 2000. Environmental effects of DFDF normal operation have been investigated when DUPIC nuclear fuel is fabricated with the maximum capacity of 50kg U/yr. The analysis results of the radiological safety of DFDF facility have shown that both national regulation limit and IMEF design criteria are satisfied.

  • PDF

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

Design of Face Recognition based Embedded Home Security System

  • Sahani, Mrutyunjanya;Subudhi, Subhashree;Mohanty, Mihir Narayan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1751-1767
    • /
    • 2016
  • Home security has become the prime concern for everyone in present scenario. In this work an attempt has been made to develop a home security system which is accessible, affordable and yet effective.The proposed system is based on 'Remote Embedded Control System' (RECS) which works both on the web and gsm platform for authentication and monitoring. This system is therefore cost effective as it relies on existing network infrastructure. As PCA is most popular and efficient algorithm for face recognition, it has been usedin this work. Next to it an interface has been developed for communication purpose in the embedded security system through the ZigBee module. Based on this embedded system, automated control of door movement has been implemented through electromagnetic door lock technology. This helps the users to monitor the real-time activities through web services/SMS. The web service consists of either web browser command or e-mail provision. The system establishes the communication between the system and authenticated user. The e-mail received by the system from the authorized person will monitor and control the real-time operation and door lock. The entire control system is reinforced using ARM1176JZF-S microcontroller and tested for actual use in the home environment. The result shows the experimental verification of the proposed system.