• Title/Summary/Keyword: Experimental tuning

Search Result 361, Processing Time 0.027 seconds

Experimental Study on Temperature Profile Following Control (온도궤적 추종제어에 관한 실험적 연구)

  • Yoon, Seok-Young;Song, Tae-Seung;Yoon, Gun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.239-239
    • /
    • 2000
  • This paper present experimental results on temperature trajectory tracking. The benefits of precalculated feedforward input together with PID feedback control are demonstrated by experimental results. To find the feedforward input, the plant (autoregresiive) model is first identified and convex optimization procedure is applied. PID controller is then implemented based on Ziegler-Nickels tuning rule to reduce effects of disturbances and modeling errors. Experimental results show an improvement in slope tracking performance over the fully PID controller.

  • PDF

An Experimental Study on the Tuning Characteristics of a Re-enterant cavity resonator (Re-enterant 공동 공진기의 주파수 가변 특성에 관한 실험적 고찰)

  • 김진구;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.133-138
    • /
    • 1987
  • In this paper the tuning characteristics of resonant frequencies are experimentally studied through the variation of the length of the inner conducting rod in a re-enterant eavity resonator. The re-enterant eavity resonator consists of a coaxial cable and a cylindrical wave guide. The length of the inner conducting rod can be varied to the longitudinal direction. The resonant frequencies of TMonq modes are measured according to the arbitrary length. In order to verify the propriety of experimental results, experimental results are compared with other theoretical results. The results in this paper can be applied to wave meter and resonant circuit of amplifier. They will be use to vary resonant frequencies of a dielectric resonator in MIC and filter.

  • PDF

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

A New Tuning Method of Dual-Mode Waveguide Filters for Satellite Transponder (위성 중계기용 이중모드 도파관 필터의 튜닝에 관한 연구)

  • 이주섭;엄만석;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.839-844
    • /
    • 2003
  • For mass and volume reduction, input demultiplxer and output multiplexer of satellite transponder widely adopt dual-mode waveguide filters fer channel filters. Generally, channel filters of the input demultiplexer are doubly terminated and channel filters of manifold output multiplexer should be singly terminated fur correct operation. This paper gives a tuning method using short-ended dummy cavity for dual-mode cavity filters. Tuning is based on the match of the computed and measured phase response of reflection coefficient. This proposed method is applied to 4-pole dual-mode doubly terminated elliptic response filter and 6-pole dual-mode singly terminated elliptic response filter for demonstration of this new tuning method. It is shown that this method shows good agreement between the experimental and computed results.

Construction and Evaluation of Agent Knowledge for Improving Flexibility in Videoconference System (화상회의 시스템의 유연성 개선을 위한 에이전트 지식 구성 및 평가)

  • Lee Sung-Doke;Kang Sang-Gil
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.605-614
    • /
    • 2005
  • In this paper, we present the design and implementation of an agent knowledge and QoS tuning methodology to improve the flexibility of agent-based flexible video-conference system. In order to improve the flexibility during video-conferencing, we propose a new T-INTER(Tuning-INTER) architecture of knowledge part in video-conference manager (VCM) agent in which an automatic QoS parameter tuning method is imbedded. The flexible video-conference system structured based on the proposed architecture can cope with the changes in service quality required by users. The VCM agent cooperates with other agents by protocols and executes the automatic QoS parameter tuning task whenever needed. By the tuned parameters, the system is able to flexibly cope with the internal or external changes and the burden of users can be decreased. In the experimental section, it is shown that our proposed system outperforms the existing system.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography

  • Park, Jae-Seok;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.380-385
    • /
    • 2011
  • Common-path interferometers are widely used for endoscopic optical coherence tomography (OCT) because an arbitrary arm length can be chosen for the endoscopic imaging probe. However, the scheme suffers from the limited range of the sample position distance from the end of the imaging probe because the position between the reference reflector and the sample is limited by the optical path-length difference (OPD) to induce an interference signal. In this study, we developed a novel method for compensating the arbitrary sample position in common-path swept-source OCT by adding an extra Mach-Zehnder interferometer in the post-path of the interfered optical signal. Theoretical analysis and an experimental demonstration of imaging depth tuning for the flexible sample position of an endoscopic OCT image are discussed. After post-tuning of sample position distance, the positioning limitation between the reference reflector and the sample can be solved for various sample positions over a range of 26 mm for the cross-sectional images of a fish eye sample.

10-GHz Band Voltage Controlled Oscillator (VCO) MMIC for Motion Detecting Sensors

  • Kim, Sung-Chan;Kim, Yong-Hwan;Ryu, Keun-Kwan
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • In this work, a voltage controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) was demonstrated for 10-GHz band motion detecting sensors. The VCO MMIC was fabricated using a $2-{\mu}m$ InGap/GaAs HBT process, and the tuning of the oscillation frequency is achieved by changing the internal capacitance in the HBT, instead of using extra varactor diodes. The implemented VCO MMIC has a micro size of $500{\mu}m{\times}500{\mu}m$, and demonstrates the value of inserting the VCO into a single chip transceiver. The experimental results showed that the frequency tuning characteristic was above 30 MHz, with the excellent output flatness characteristic of ${\pm}0.2dBm$ over the tuning bandwidth. And, the VCO MMIC exhibited a phase noise characteristic of -92.64 dBc/Hz and -118.28 dBc/Hz at the 100 kHz and 1 MHz offset frequencies from the carrier, respectively. The measured values were consistent with the design values, and exhibited good performance.

A Study on Frequency Tunable Vibration Energy Harvester (주파수 튜닝이 가능한 진동형 에너지 하베스터에 관한 연구)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2014
  • The common vibration energy harvester effectively converts mechanical vibration to electric power at a specific resonance frequency that must match the ambient excitation frequency. The resonance frequencies of energy harvesters are fixed during the design process and could not be changed after fabrication. In this paper, we proposed the new frequency tuning which uses the rotatable spring in order to adjust the spring constants. By this tuning method, the resonance frequency of the system can simply be manipulated using spring rotation. The proposed energy harvester has been successfully tuned to a resonance frequency between 23 and 32 Hz. The experimental results demonstrated that the proposed energy harvester could generate a maximum output power of $60{\mu}W$ with an acceleration of 0.5 g ($1g=9.81m/s^2$), and that the resonance frequency of the harvester was able to tune approximately 31.4%. When the proposed harvester was attached to an automobile engine, the maximum open circuit voltage of 1.78 Vpp was produced at 700 rpm.

Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters

  • Jung, Jin-Woo;Leu, Viet Quoc;Dang, Dong Quang;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.980-988
    • /
    • 2014
  • This paper proposes an online gain tuning algorithm for a robust sliding mode speed controller of surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed controller is constructed by a fuzzy neural network control (FNNC) term and a sliding mode control (SMC) term. Based on a fuzzy neural network, the first term is designed to approximate the nonlinear factors while the second term is used to stabilize the system dynamics by employing an online tuning rule. Therefore, unlike conventional speed controllers, the proposed control scheme does not require any knowledge of the system parameters. As a result, it is very robust to system parameter variations. The stability evaluation of the proposed control system is fully described based on the Lyapunov theory and related lemmas. For comparison purposes, a conventional sliding mode control (SMC) scheme is also tested under the same conditions as the proposed control method. It can be seen from the experimental results that the proposed SMC scheme exhibits better control performance (i.e., faster and more robust dynamic behavior, and a smaller steady-state error) than the conventional SMC method.