• Title/Summary/Keyword: Experimental design

Search Result 16,923, Processing Time 0.045 seconds

Studies on the Environmental Factors Affecting the Cocoon Crops in Summer and Autumn in Korea (한국의 하추잠작 안정을 위한 환경요인에 관한 연구)

  • 이상풍
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.2
    • /
    • pp.1-34
    • /
    • 1974
  • These experiments pertain to various factors influencing the quantitative characters of cocoon crops in summer and early autumn seasons. Initially, in order to establish the possible ways of the silkworm rearing more than three times a year in Korea, the author attempted to get further information about the various factors affecting the cocoon crop in every silkworm rearing season. The trials were conducted eleven times a year at four places for three years. The field trial was conducted with 19 typical sericultural farmers who had been surveyed. At the same time the author statistically analyzed the various factors in close relation to tile cocoon crop in autumn season. The effect of guidance on 40 sericultural farmers was analyzed, comparing higher level farmers with lower level farmers ; and the author surveyed 758 non-guided farmers near the guided farmers during both spring and autumn seasons. In addition, another trial on the seasonal change of leaf quality was attempted with artificial diets prepared with leaves grown in each season. It was found that related factors to cocoon crops in summer and early autumn seasons appeared to be leaf quality, and temperature for young and grown larvae. A 2$^4$ factorial experiment was designed in summer season, and another design with one more level of varied temperature or hard leaf added to a 24 factorial experiment was conducted in early autumn. The experimental results can be summarized: 1. Study on the cocoon crops in the different rearing seasons 1) It was shown that earlier brushing of silkworm generally produced the most abundant cocoon crop in spring season, and earlier or later than the conventional brushing season, especially earlier brushing was unfavorable for the abundant cocoon crop in autumn season. 2) The cocoon crop was affected by the rearing season, and decreases in order of sire with spring, autumn, late autumn, summer and early autumn seasons. 3) It was Proved that ordinary rearing and branch rearing were possibles 4 times a year ; in the 1st, 3rd, 8th, and 10th brushing season. But the 11th brushing season was more favorable for the most abundant cocoon crop of branch rearing, instead of the 10th brushing season with ordinary rearing. 2. Study on the main factors affecting the cocoon crop in autumn season 1) Accumulated pathogens were a lethal factor leading to a bad cocoon crop through neglect of disinfection of rearing room and instruments. 2) Additional factors leading to a poor cocoon crop were unfavorable for rearing temperature and humidity, dense population, poor choice of moderately ripened leaf, and poor feeding techniques. However, it seemed that there was no relationship between the cocoon crop and management of farm. 3) The percentage of cocoon shell seemed to be mostly affected by leaf quality, and secondarily affected by the accumulation of pathogens. 3. Study on the effect of guidance on rearing techniques 1) The guided farms produced an average yearly yield of 29.0kg of cocoons, which varied from 32.3kg to 25.817g of cocoon yield per box in spring versus autumn, respectively. Those figures indicated an annual average increase of 26% of cocoon yield over yields of non-guided farmers. An increase of 20% of cocoon yield in spring and 35% of cocoon yield in autumn were responsible. 2) On guided farms 77.1 and 83.7% of total cocoon yields in the spring and autumn seasons, respectively, exceeded 3rd grade. This amounted to increases of 14.1 and 11.3% in cocoon yield and quality over those of non-guided farms. 3) The average annual cocoon yield on guided farms was 28.9kg per box, based on a range of 31.2kg to 26.9kg per box in spring and autumn seasons, respectively. This represented an 8% increase in cocoon yield on farms one year after guidance, as opposed to non-guided farms. This yield increase was due to 3 and 16% cocoon yield increases in spring and autumn crops. 4) Guidance had no effect on higher level farms, but was responsible for 19% of the increases in production on lower level farms. 4. Study on the seasonal change of leaf quality 1) In tests with grown larvae, leaves of tile spring crop incorporated in artificial diets produced the best cocoon crop; followed by leaves of the late autumn, summer, autumn, and early autumn crops. 2) The cocoon crop for young larvae as well as for grown larvae varied with the season of leaf used. 5. Study on factors affecting the cocoon crops in summer and early autumn A. Early autumn season 1) Survival rate and cocoon yield were significantly decreased at high rearing temperatures for young larvae 2) Survival rate, cocoon yield, and cocoon quality were adversely affected by high rearing temperatures for grown larvae. Therefore increases of cocoon quantity and improvement of cocoon quality are dependent on maintaining optimum temperatures. 3) Decreases in individual cocoon weight and longer larval periods resulted with feeding of soft leaf and hard leaf to young larvae, but the survival rate, cocoon yield and weight of cocoon shell were not influenced. 4) Cocoon yield and cocoon quality were influenced by feeding of hard leaf to grown larvae, but survival rate was not influenced by the feeding of soft leaf and hard leaf. 5) When grown larvae were inevitably raised at varied temperatures, application of varied temperature in the raising of both young and grown larvae was desirable. Further research concerning this matter must be considered. B. Summer season 1) Cocoon yield and single cocoon weight were decreased at high temperatures for young larvae and survival rate was also affected. 2) Cocoon yield, survival rate. and cocoon quality were considerably decreased at high rearing temperatures for grown larval stages.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF