• Title/Summary/Keyword: Experimental compensation

Search Result 1,013, Processing Time 0.025 seconds

An algorithm for the image improvement in the multi-view images coding (Multi-view 영상 코딩에서 영상 개선 알고리듬)

  • 김도현;최동준;양영일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.53-61
    • /
    • 1998
  • In this paper, we propose an efficient multi-view images coding algorithm to find the optimal depth and texture from the set of multi-view images. The proposed algorithm consists of two consecutive steps, i) the depth estraction step, and ii) the texture extraction step, comparedwith the traditional algorithem which finds the depth and texture concurrently. The X-Y plane of the normalized object space is divided into traingular paatches and the Z value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the traingular patches is extracted from the multi-view images by applying the affine transformation based disparity compensation method to the traingular pateches with the depth extracted from the first step. Experimental results show that the SNR(Singnal-to- Noise Ratio) of images enconded by our algorithm is better than that of images encoded by the traditional algorithm by the amount about 4dB for for the test sets of multi-view images called dragon, kid, city and santa.

  • PDF

Characteristics and Strategy of Sales Promotion for On-line Fashion SOHO Shopping Mall (온라인 패션 SOHO 쇼핑몰의 판매촉진특성 및 판매촉진전략)

  • Ji, Hye-Kyung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.2
    • /
    • pp.163-178
    • /
    • 2008
  • The purpose of this study is to search the characteristics and strategy of sales promotion in on-line fashion SOHO (Small Office Home Office) shopping malls. 87 of these shopping malls have been selected through a ranking service called 100HOT (http://www.100hot.co.kr), and 906 cases of sales promotion activities have been executed on web-sites of these shopping malls. The cases have been analyzed by descriptive statistics and chi-square analysis. The results are as follows: First, on-line fashion SOHO shopping malls have frequently used sales promotion tactics such as demonstration, display, viral marketing, sale, event, customer compensation, community marketing, experimental marketing, coupon, premium, reserve fund and delivery service. Second, there are significant differences between shopping malls for men and women in sales promotion tactics such as demonstration, viral marketing, sale, and community marketing, but there is no significant difference in tactics such as demonstration, event, and customer compensation. Third, the shopping malls have used various sales promotion strategies such as maximizing the sales, characterizing product features, procuring new customers, preserving existing customers, enhancing customer loyalty, improving customer relationship and controlling returns.

  • PDF

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

Secondary Voltage Control for Reactive Power Sharing in an Islanded Microgrid

  • Guo, Qian;Wu, Hongyan;Lin, Liaoyuan;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.329-339
    • /
    • 2016
  • Owing to mismatched feeder impedances in an islanded microgrid, the conventional droop control method typically results in errors in reactive power sharing among distributed generation (DG) units. In this study, an improved droop control strategy based on secondary voltage control is proposed to enhance the reactive power sharing accuracy in an islanded microgrid. In a DG local controller, an integral term is introduced into the voltage droop function, in which the voltage compensation signal from the secondary voltage control is utilized as the common reactive power reference for each DG unit. Therefore, accurate reactive power sharing can be realized without any power information exchange among DG units or between DG units and the central controller. Meanwhile, the voltage deviation in the microgrid common bus is removed. Communication in the proposed strategy is simple to implement because the information of the voltage compensation signal is broadcasted from the central controller to each DG unit. The reactive power sharing accuracy is also not sensitive to time-delay mismatch in the communication channels. Simulation and experimental results are provided to validate the effectiveness of the proposed method.

Versatile UPQC Control System with a Modified Repetitive Controller under Nonlinear and Unbalanced Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1093-1104
    • /
    • 2015
  • A standard repetitive controller (RC) is theoretically able to replace a bank of resonant controllers in harmonic signals tracking applications. However, the traditional RC has some drawbacks such as a poor dynamic response and a complex structure to compensate grid frequency deviations for an effective unified power quality conditioner (UPQC) control scheme. In order to solve these problems, an improved RC with an outstanding dynamic response and a simplified grid frequency adaptive scheme is proposed for UPQC control systems in this paper. The control strategy developed for the UPQC has delay time, i.e., one-sixth of a fundamental period (Tp/6), repetitive controllers. As a result, the UPQC system can provide a fast dynamic response along with good compensation performance under both nonlinear and unbalanced loads. Furthermore, to guarantee the excellent performance of the UPQC under grid frequency deviations, a grid frequency adaptive scheme was developed for the RC using a simple first order Padé's approximation. When compared with other approaches, the proposed control method is simpler in structure and requires little computing time. Moreover, the entire control strategy can be easily implemented with a low-cost DSP. The effectiveness of the proposed control method is verified through various experimental tests.

New Reference Generation for a Single-Phase Active Power Filter to Improve Steady State Performance

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Bae, Byung-Yeol
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.412-418
    • /
    • 2010
  • This paper proposes a new algorithm to generate a reference signal for an active power filter using a sliding-window FFT operation to improve the steady-state performance of the active power filter. In the proposed algorithm the sliding-window FFT operation is applied to the load current to generate the reference value for the compensating current. The magnitude and phase-angle for each order of harmonics are respectively averaged for 14 periods. Furthermore, the phase-angle delay for each order of harmonics passing through the controller is corrected in advance to improve the compensation performance. The steady-state and transient performance of the proposed algorithm was verified through computer simulations and experimental work with a hardware prototype. A single-phase active power filter with the proposed algorithm can offer a reduction in THD from 75% to 4% when it is applied to a non-linear load composed of a diode bridge and a RC circuit. The active power filter with the proposed reference generation method shows accurate harmonic compensation performance compared with previously developed methods, in which the THD of source current is higher than 5%.

A New On-Line Dead-Time Compensator for Single-Phase PV Inverter (단상 PV 인버터용 온라인 데드타임 보상기 연구)

  • Vu, Trung-Kien;Lee, Sang-Hoey;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.409-415
    • /
    • 2012
  • This paper presents a new software-based on-line dead-time compensation technique for a single-phase grid-connected photovoltaic (PV) inverter system. To prevent a short circuit in the inverter arms, a switching delay time must be inserted in the pulse width modulation (PWM) signals. This causes the dead-time effect, which degrades the system performance around zero-crossing point of the output current. To reduce the dead-time effect around the zero-crossing point of grid current, a harmonic mitigation of grid current is used as an additional part of the synchronous frame current control scheme. This additional task mitigates the harmonic components caused by the dead-time from the grid current. Simulation and experimental results are shown to verify the effectiveness of the proposed dead-time compensation method in the single-phase grid-connected inverter system.

An Improved Model Predictive Direct Torque Control for Induction Machine Drives

  • Song, Wenxiang;Le, Shengkang;Wu, Xiaoxin;Ruan, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.674-685
    • /
    • 2017
  • The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

A Study on the Weavingless Arc Sensor System in GMA Welding (II) -Torch Height Control in Weld Seam Tracking (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (II) -용접선 추적의 토치방향 높이제어-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 1998
  • Among the position sensing methods available, the arc sensor which utilizes the electrical signal obtained from the welding arc itself is one of the most prevalently used methods, because it has an advantage that no particular sensing device is necessary and real-time sensing of a groove position is possible directly under the arc. The authors have already developed a seam tracking system that contains a new arc sensor algorithm, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. In this study a torch height control algorithm for automatic weld seam tracking was proposed for completing the previous system, which uses an on-off control technique. To implement the torch height control algorithm during weld seam tracking the system parameters which include 2nd averaging range, weighting factor for 2nd moving averaging, and Z-directional basic compensation distance were determined by experimental analysis. Finally the two different height control methods, one is simple on-off control and the other on-off control using a reference current value , were compared in their tracking abilities.

  • PDF

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.