• Title/Summary/Keyword: Experimental building

Search Result 2,687, Processing Time 0.029 seconds

Vibration Estimation of Synchrotron Light Source Building Using Experimental Modal Analysis (실험적 모드해석을 이용한 방사광 가속기 건물의 진동평가)

  • 박상규;이홍기;권형오
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.413-421
    • /
    • 1995
  • Synchrotron light source building of the accelerator has stringent vibration limits since the performance of the optical devices and electronic equipments in the laboratory is strongly influenced by the vibrations of the building. In this study, vibrations of the synchrotron light source building are estimated using experimental modal analysis and force response simulation technique. Dynamic properties of the building are identified from the modal parameters and vibration responses are predicted from the force response simulation. A double anti vibration system is designed and applied to the HVAC equipments and it has been shown that the measured vibrations of the building with the double anti vibration system satisfy the vibration criteria.

  • PDF

Experimental study of wind-induced pressures on tall buildings of different shapes

  • Nagar, Suresh K;Raj, Ritu;Dev, Nirendra
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.431-443
    • /
    • 2020
  • The modern tall buildings are often constructed as an unconventional plan and as twin buildings. Wind load on the tall building is significantly influenced by the presence of another building in the near vicinity. So, it is imperative to study wind forces on an unconventional plan shaped tall building. Mean wind pressure coefficients of a square and 'H' plan shape tall buildings are investigated using wind tunnel experiments. The experiments were carried out for various wind directions from 00 to 900 at an interval of 300 and various locations of the identical interfering building. The experimental results are presented at the windward face from the viewpoint of effects on cladding design. To quantify the interference effects, interference factors (I.F) are calculated. Mean pressure coefficients of both models are compared for isolated and interference conditions. The results show that pressure reduces with an increase in wind angle till 600 wind direction. The interfering building at full blockage interference condition generates more suction than the other two conditions. The interference factor for both models is less than unity. H-plan building model is subjected to a higher pressure than the square model.

Application of artificial neural networks for dynamic analysis of building frames

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.765-780
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. In the present study, ANN models are developed in three categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is demonstrated through developed ANN models that geometry of the building and the sizes of the columns are significant parameters in the dynamic analysis of building frames. The testing dataset of these three models is used to obtain the empirical relationship between the height of the building and fundamental period of vibration and compared with the similar equations proposed by other researchers. Experiments are conducted on Mild Steel frames using uniaxial shake table. It is seen that the values obtained through the ANN models are close to the experimental values. The validity of ANN technique is verified by experimental values.

Moment-curvature hysteresis model of angle steel frame confined concrete columns

  • Rong, Chong;Tian, Wenkai;Shi, Qingxuan;Wang, Bin;Shah, Abid Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The angle steel frame confined concrete columns (ASFCs) are an emerging form of hybrid columns, which comprise an inner angle steel frame and a concrete column. The inner angle steel frame can provide axial bearing capacity and well confining effect for composite columns. This paper presents the experimental and theoretical studies on the seismic behaviour of ASFCs. The experimental study of the 6 test specimens is presented, based on the previous study of the authors. The theoretical study includes two parts. One part establishes the section analysis model, and it uses to analyze section axial force-moment-curvature. Another part establishes the section moment-curvature hysteresis model. The test and analysis results show that the axial compression ratio and the assembling of steel slabs influence the local buckling of the angle steel. The three factors (axial compression ratio, content of angle steel and confining effect) have important effects on the seismic behaviour of ASFCs. And the theoretical model can provide reasonably accurate predictions and apply in section analysis of ASFCs.

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.

An Experimental Study on Flexural Performance Evaluation of C-Shaped Steel-Timber Composite Beams (C형 강재-목재 합성보의 휨성능 평가에 관한 실험 연구)

  • Oh, Keunyeong;Lee, Sang-Sup;Park, Keum-Sung;Boo, Yoon-Seob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2024
  • In this study, the flexural strength and ductility of steel-timber composite beams were evaluated to enhance the structural performance of glued-laminated timber beams. Three specimens were fabricated, including one reference glulam beam and two composite beams. The composite beams were constructed by attaching steel sections to the glulam beam using either liquid adhesive or screws. The experimental results showed that the structural performance of the steel-timber composite beams was approximately 2-3 times higher than the reference glulam beam, indicating that both flexural strength and ductility were sufficiently ensured. Notably, the specimen constructed with liquid adhesive demonstrated superior structural performance compared to the screw-attached specimen.

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.