• Title/Summary/Keyword: Experimental Identification

Search Result 1,613, Processing Time 0.027 seconds

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Damage detection of railway bridges using operational vibration data: theory and experimental verifications

  • Azim, Md Riasat;Zhang, Haiyang;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.149-166
    • /
    • 2020
  • This paper presents the results of an experimental investigation on a vibration-based damage identification framework for a steel girder type and a truss bridge based on acceleration responses to operational loading. The method relies on sensor clustering-based time-series analysis of the operational acceleration response of the bridge to the passage of a moving vehicle. The results are presented in terms of Damage Features from each sensor, which are obtained by comparing the actual acceleration response from the sensors to the predicted response from the time-series model. The damage in the bridge is detected by observing the change in damage features of the bridge as structural changes occur in the bridge. The relative severity of the damage can also be quantitatively assessed by observing the magnitude of the changes in the damage features. The experimental results show the potential usefulness of the proposed method for future applications on condition assessment of real-life bridge infrastructures.

A Study on the Experimental Dynamic Identification of Cylindrical Oil Dampers in the Wide Frequency Range (넓은 주파수 범위에서의 실린더형 유체 댐퍼에 대한 실험적 동특성 규명 연구)

  • Moon, S.J.;Kim, H.S.;Chung, T.Y.;Lee, D.H.;Hwang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.528-536
    • /
    • 2010
  • System identification for cylindrical oil dampers is carried out based on a series of dynamic experimental tests and theoretical approach for the analysis of the experimental data. Experimental tests are conducted using a specific hydraulic actuator in the wide frequency range from 10 Hz to 90 Hz. From this study, it is confirmed that control force of the damper is composed of inertia, damping and restoring components. In general, both restoring and damping components are significant and comparable. However, the portion of the inertia components becomes more significant than to be negligible in the high frequency range.

Modeling methods used in bioenergy production processes: A review

  • Akroum, Hamza;Akroum-Amrouche, Dahbia;Aibeche, Abderrezak
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.323-347
    • /
    • 2020
  • The enhancements of bioenergy production effectiveness require the comprehensively experimental study of several parameters affecting these bioprocesses. The interpretation of the obtained experimental results and the estimation of optimum yield are extremely complicated such as misinterpreting the results of an experiment. The use of mathematical modeling and statistical experimental designs can consistently supply the predictions of the potential yield and the identification of defining parameters and also the understanding of key relationships between factors and responses. This paper summarizes several mathematical models used to achieve an adequate overall and maximal production yield and rate, to screen, to optimize, to identify, to describe and to provide useful information for the effect of several factors on bioenergy production processes. The usefulness, the validity and, the feasibility of each strategy for studying and optimizing the bioenergy-producing processes were discussed and confirmed by the good correlation between predicted and measured values.

Feature Visualization and Error Rate Using Feature Map by Convolutional Neural Networks (CNN 기반 특징맵 사용에 따른 특징점 가시화와 에러율)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we presented the experimental basis for the theoretical background and robustness of the Convolutional Neural Network for object recognition based on artificial intelligence. An experimental result was performed to visualize the weighting filters and feature maps for each layer to determine what characteristics CNN is automatically generating. experimental results were presented on the trend of learning error and identification error rate by checking the relevance of the weight filter and feature map for learning error and identification error. The weighting filter and characteristic map are presented as experimental results. The automatically generated characteristic quantities presented the results of error rates for moving and rotating robustness to geometric changes.

Effectiveness of Enneagram Group Counseling for Self-identification and Depression in Nursing College Students (에니어그램 집단상담이 간호대학생의 자아정체감과 우울에 미치는 효과)

  • Lee, Jeong Seop;Yoon, Jeong Ah;Do, Keong Jin
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.5
    • /
    • pp.649-657
    • /
    • 2013
  • Purpose: The purpose of this study was to examine effects of enneagram group counseling program on self-identification and depression in nursing college students. Three groups, categorized by how the students solve their conflicts, were selected to identify changes from the program. Methods: A quasi-experimental study with a non-equivalent control group and pre posttest design was used. Participants were assigned to the experimental group (n=30) or control group (n=33). The experimental group participated in enneagram group counseling program for 38 hours through eight sessions covering four different topics. Collected data were analyzed using Chi-square test, Fisher's exact test, t-test, and Wilcoxon signed rank test. Results: Total self-identity score for the experimental group was significantly higher than the control group. However, there was no significant difference between the two groups for depression scores. The Assertive and Compliant groups demonstrated significant change in self-identification while the Withdrawn groups did not reveal any change. Conclusion: Results indicate that the enneagram group counseling program is very effective in establishing positive self-identification for nursing college students who face developmental crisis and stressful situations. It is also expected that this program would be useful to enhance the students' confidence through a deeper understanding and acceptance of themselves.

Development of Instructional Materials about Physical Fiber Identification Method in Home Economics Lesson of the Middle School (물리적 섬유감별방법에 대한 중학교 의복재료 단원 탐구활동지 개발)

  • Lee, Heeran
    • Journal of Korean Home Economics Education Association
    • /
    • v.28 no.3
    • /
    • pp.65-77
    • /
    • 2016
  • The purpose of this study is to develop an inquiry sheet for the contents of the clothing curriculum of home economics in middle schools using a physical fiber Identification method to increase students' interests in and understanding of clothing materials. Therefore, a physical fiber Identification method suitable to middle school students was developed in actual classrooms and the effects were analyzed. As a result, the physical fiber identification method was developed to distinguish between wool and acrylic knits; moreover, the identification method between silk and polyester fiber was studied. And then the inquiry sheet using fiber identification method was also developed. When interests in learning, attitudes of acceptance toward learning, and learning achievements of the experimental group (used the inquiry sheet) and the control group (did not use the inquiry sheet) were compared, the experimental group scored higher in every category, all of which were meaningful differences. Thus, this study demonstrated that the developed fiber differentiation method and inquiry sheet improved self-directed learning as well as learners' understanding of clothing materials by enabling the application the knowledge to the learners' realities.

System identification of steel member acting compressive force using natural frequency of vibration (고유진동수를 이용하여 압축력이 작용하는 철골 부재의 구조계 추정)

  • Shim, Hak-Bo;Park, Soo-Yong;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.45-48
    • /
    • 2007
  • The aim of this study is to estimate the compressive force of steel member using a system identification technique with vibration measurements. To date, several methods have been presented to estimate the compressive force using static and/or dynamic responses of the steel member. However, each and every one of these methods has its disadvantages as well as advantages in its procedures, level of accuracy, and equipment requirements. The paper reports a qualitative investigation of vibration under monoharmonic excitation. The methodology utilizes the relationship between the natural frequencies, the structural parameters, and the compressive force of the member. In this paper, experimental results are presented with a steel beam subjecting to several compressive forces and the proposed method is validated using both numerical and experimental data.

  • PDF

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

Model Identification of Hydraulic Pin-On-Disk type Tribotester with DDV

  • Kim, Seung-Hyun;Lee, Chang-Don;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.1-170
    • /
    • 2001
  • This paper developed the model for electro hydraulic force control system by identification method via ARMAX model. Implementation of Identification is performed on Pin-On-Disk type tribotester. The wear mechanism is an important mechanic property to select a material´s life and a optimum work condition. Pin-on-disk type tribotester is popular wear analysis experimental equipment and its mechanism is that adding a force on a rotating disk to simplify two surface contact´s wear experimental condition. Material´s rotating velocity and eccentricity rotation makes disturbance and it affects adding constant force. To get a high performance of force adding part, DDV(Direct Drive Valve) which has pressure control loop is used. To obtain a tribotester´ s ARMAX model, prediction error method(PEM) is used in case force adding part and rotating part is ...

  • PDF