• Title/Summary/Keyword: Experimental Frame

Search Result 1,847, Processing Time 0.026 seconds

Simplified Analytical Model for a Steel Frame with Double Angle Connections (더블앵글 접합부를 사용한 철골조의 단순해석 모델)

  • Yang, Jae-Guen;Lee, Gil-Young;Park, Jeong-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Gunnery Detection Method Using Reference Frame Modeling and Frame Difference (참조 프레임 모델링과 차영상을 이용한 포격 탐지 기법)

  • Kim, Jae-Hyup;Song, Tae-Eun;Ko, Jin-Shin;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.62-70
    • /
    • 2012
  • In this paper, we propose the gunnery detection method based on reference frame modeling and frame difference method. The frame difference method is basic method in target detection, and it's applicable to the detection of moving targets. The goal of proposed method is the detection of gunnery target which has huge variation of energy and size in the time domain. So, proposed method is based on frame difference, and it guarantee real-time processing and high detection performance. In the method of frame difference, it's important to generate reference frame. In the proposed method, reference frame is modeled and updated in real time processing using statistical values for each pixels. We performed the simulation on 73 IR video data that has gunnery targets, and the experimental results showed that the proposed method has 95.7% detection ratio under condition that false alarm is 1 per hour.

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

A Development of Modular Experimetal Vehicle for Exchanging Suspension Systems (현가계의 교체가 가능한 모듈형 실험차량의 개발)

  • 배상우;강주석;윤중락;이장무;탁태오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.847-851
    • /
    • 1996
  • In this study, in order to adapt various types of suspensions that is not possible for a passenger car, and to validate the effect of the design change of a suspension upon ride and handling characteristics of vehicle, the modular experimental vehicle, which makes possible to exchange suspension systems, has been designed and developed. In order to enable the assemblage between the modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, the module frames and the brackets are designed are designed using three- dimensionalsolid modeler to check the interference between each part of a vehicle. The results of simulation and experiment are compared.

  • PDF

A Study on the Characteristics of Vocational Experience Facilities in Accordance with Experience Marketing - Focused on Vocational Experience Facilities for Children - (체험 마케팅에 의한 직업체험관의 특성에 관한 연구 - 어린이 직업체험 중심으로 -)

  • Joo, Hee-Moon;Byun, Dae-Joong
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.3
    • /
    • pp.108-116
    • /
    • 2013
  • This study has the purpose to review the way of experience element and property of space design appearing in vocational experience space and accumulate basic study material for children's vocational experience space and build systematic and specialized modules. Analysing the marketing elements of experience space through pilot research to arrange frame of analysis, and in a determined range, experimental marketing's property appearing in children's vocational experience center is analysed. This researcher analysed experimental displaying space's function of recognition, emotional, behavior, sense marketing and experimental marketing induced from pilot research on space design expressive elements of experimental marketing when it is applied to spaces through the frame of analysis with the combination of total 8 kind's experience display space function such as investigative, conceptional, aesthetic, entertaining, logical, relative, participating, and comprehensive experience based on 5 vocational experience spaces located in Seoul and Gyeonggi, opened after 2010, being operated at present with more than 500 pyeong (about 1,650 square meter) and targeted for children, after this researcher visited the site directly to make check list with the frame of analysis together with the staff and administrator in charge of vocational experience education. As a conclusion, vocational experience center is a space of edutainment helping children experience various profession more easily to find their interest and to bring up their dream. By analysing current vocational experience center through the element called experimental marketing, current status of vocational experience center could be known. the experience itself in vocational experience center becomes a merchandise. Instead of mere experience, so as to get professional experience and new information, new experiences should be provided by incessant variation and development. This study is to build basic research data for children's vocational experience space, however not only drawing specialty of vocational experience center through the connection of enterprises based on the contents arranged above but also systematic and specialized modules are expected to be built in next researches.

Quantization Modeling of Intra Frame for Rate Control (비트율 제어를 위한 인트라 프레임 양자화 모델링)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1207-1214
    • /
    • 2014
  • The first frame of a GOP is encoded in intra mode which generates a larger number of bits. In addition, the first frame is used for the inter mode encoding of the following frames. Thus the encoding results of the intra frame affects the first frame as well as the following frames. Traditionally, the quantization parameter for an intra frame is determined only depending on the bpp not considering the characteristics of the intra frame. For accurate intra frame encoding, we should consider not only bpp but also the complexity of the video sequence and the output bandwidth. In this paper, we propose a real-time quantization model which is used to calculate the quantization parameter for an intra frame encoding based on the investigation on the characteristics of a GOP. It is shown by experimental results that the proposed quantization model captures the characteristics of an intra frame effectively and the proposed method for model parameters accurately estimates the real values.

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Comparison of Different Numerical Models of RC Elements for Predicting the Seismic Performance of Structures

  • Zendaoui, Abdelhakim;Kadid, A.;Yahiaoui, D.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.461-478
    • /
    • 2016
  • This paper aims to provide guidelines for the numerical modeling of reinforced concrete (RC) frame elements in order to assess the seismic performance of structures. Several types of numerical models RC frame elements are available in nonlinear structural analysis packages. Since these numerical models are formulated based on different assumption and theories, the models accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineering and limits their confidence in the analysis resultants. In this study, the applicability of four representative numerical models of RC frame elements is evaluated through comparison with experimental results of four-storey bare frame available from European Laboratory for Structural Assessment. The accuracy of a numerical model is evaluated according to the top displacement, interstorey drift, Maximum storey shear, damage pattern and energy dissipation capacity of the frame structure. The results obtained allow a better understanding of the characteristics and potentialities of all procedures, helping the user to choose the best approach to perform nonlinear analysis.