• Title/Summary/Keyword: Experimental Autoimmune Encephalomyelitis

Search Result 30, Processing Time 0.02 seconds

Toll-like Receptor 2 in Autoimmune Inflammation

  • Kathryne E. Marks;Kaylin Cho;Courtney Stickling;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

Acute disseminated encephalomyelitis in children: differential diagnosis from multiple sclerosis on the basis of clinical course

  • Lee, Yun-Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.234-240
    • /
    • 2011
  • Acute disseminated encephalomyelitis (ADEM) is a demyelinating disease of the central nervous system (CNS) that typically presents as a monophasic disorder associated with multifocal neurologic symptoms and encephalopathy. ADEM is considered an autoimmune disorder that is triggered by an environmental stimulus in genetically susceptible individuals. The diagnosis of ADEM is based on clinical and radiological features. Most children with ADEM initially present with fever, meningeal signs, and acute encephalopathy. The level of consciousness ranges from lethargy to frank coma. Deep and subcortical white-matter lesions and gray-matter lesions such as thalami and basal ganglia on magnetic resonance imaging (MRI) are associated with ADEM. In a child who presents with signs of encephalitis, bacterial and viral meningitis or encephalitis must be ruled out. Sequential MRI is required to confirm the diagnosis of ADEM, as relapses with the appearance of new lesions on MRI may suggest either multiphasic ADEM or multiple sclerosis (MS). Pediatric MS, defined as onset of MS before the age of 16, is being increasingly recognized. MS is characterized by recurrent episodes of demyelination in the CNS separated in space and time. The McDonald criteria for diagnosis of MS include evidence from MRI and allow the clinician to make a diagnosis of clinically definite MS on the basis of the interval preceding the development of new white matter lesions, even in the absence of new clinical findings. The most important alternative diagnosis to MS is ADEM. At the initial presentation, the 2 disorders cannot be distinguished with certainty. Therefore, prolonged follow-up is needed to establish a diagnosis.

Ciglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Ligand, Inhibits Proliferation and Differentiation of Th17 Cells

  • Kim, Dong Hyeok;Ihn, Hyun-Ju;Moon, Chaerin;Oh, Sang-Seok;Park, Soojong;Kim, Suk;Lee, Keun Woo;Kim, Kwang Dong
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.71-76
    • /
    • 2015
  • Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) was identified as a cell-intrinsic regulator of Th17 cell differentiation. Th17 cells have been associated with several autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), inflammatory bowel disease (IBD), and collagen-induced arthritis. In this study, we confirmed $PPAR{\gamma}$-mediated inhibition of Th17 cell differentiation and cytokine production at an early stage. Treatment with ciglitazone, a $PPAR{\gamma}$ ligand, reduced both IL-$1{\beta}$-mediated enhancement of Th17 differentiation and activation of Th17 cells after polarization. For Th17 cell differentiation, we found that ciglitazone-treated cells had a relatively low proliferative activity and produced a lower amount of cytokines, regardless of the presence of IL-$1{\beta}$. The inhibitory activity of ciglitazone might be due to decrease of CCNB1 expression, which regulates the cell cycle in T cells. Hence, we postulate that a pharmaceutical $PPAR{\gamma}$ activator might be a potent candidate for treatment of Th17-mediated autoimmune disease patients.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Transplantation of human umbilical cord mesenchymal stem cells optimized with IFN-γ is a potential procedure for modification of motor impairment in multiple sclerosis cases: a preclinical systematic review and meta-analysis study

  • Mohamad Mahdi Esmaeili Araghi;Amir Abdolmaleki;Hadi Esmaeili Gouvarchin Ghaleh;Bahman Jalali Kondori;Akbar Ghorbani Alvanegh;Mehrdad Moosazadeh Moghaddam;Seyed Javad Hosseini Nejad Anbaran
    • Anatomy and Cell Biology
    • /
    • v.57 no.3
    • /
    • pp.333-345
    • /
    • 2024
  • Stem cells transplantation (SCT) is known as a newfound strategy for multiple sclerosis (MS) treatment. Human umbilical cord mesenchymal stem cells (hUCMSCs) contain various regenerative features. Experimental autoimmune encephalomyelitis (EAE) is a laboratory model of MS. This meta-analysis study was conducted to assess the overall therapeutic effects of hUCMSCs on reduction of clinical score (CS) and restoration of active movement in EAE-induced animals. For comprehensive searching (in various English and Persian databases until May 1, 2024), the main keywords of "Experimental Autoimmune Encephalomyelitis", "Multiple Sclerosis", "Human", "Umbilical Cord", "Mesenchymal", and "Stem Cell" were hired. Collected data were transferred to the citation manager software (EndNote x8) and duplicate papers were merged. Primary and secondary screenings were applied (according to the inclusion and exclusion criteria) and eligible studies were prepared for data collection. CS of two phases of peak and recovery of EAE were extracted as the difference in means and various analyses including heterogeneity, publication bias, funnel plot, and sensitivity index were reported. Meta-analysis was applied by CMA software (v.2), P<0.05 was considered a significant level, and the confidence interval (CI) was determined 95% (95% CI). Six eligible high-quality (approved by ARRIVE checklist) papers were gathered. The difference in means of peak and recovery phases were -0.775 (-1.325 to -0.225; P=0.006; I2=90.417%) and -1.230 (-1.759 to -0.700; P<0.001; I2=93.402%), respectively. The overall therapeutic effects of SCT of hUCMSCs on the EAE cases was -1.011 (95% CI=-1.392 to -0.629; P=0.001). hUCMSCs transplantation through the intravenous route to the animal MS model (EAE) seems a considerably effective procedure for the alleviation of motor defects in both phases of peak and recovery.

Nitric oxide-induced immune switching in experimental inflammatory autoimmune diseases

  • Kwak, Hyun-Jeong;Kim, Hyung-Jin;Park, Jae-Sung;Jun, Chang-Duk;Lee, Mun-Young;Shin, Tae-Kyun;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.116-125
    • /
    • 2001
  • Background: Nitric oxide (NO) production has been described as a double-edged sword eliciting both pro- and anti-inflammatory effects in different immune reactions. This work was undertaken to investigate the immunoregulatory role of NO in experimental allergic encephalomyelitis (EAE) and experimental allergic uveitis (EAU). Method: We examined whether molsidomine (MSDM), a NO donor, administration to the myelin basic protein (MBP)- or interphotoreceptor retinoid binding protein (IRBP)-immunized rats could suppress EAE development by shifting toward the Th2 cytokine response. In the EAE experiments, the rats were treated orally with MSDM (10 mg/kg/day) at the early stage (-1~4 days) or throughout the experimental period (-1~15 days). Results: This resulted in significant amelioration of the disease and mild clinical symptoms, while MBP-immunization without MSDM administration showed severe EAE development. A marked reduction in inflammation was also observed in the spinal cord, indicating the crucial role of NO in the pathogenesis of EAE in in vivo. In the EAU experiments, a 24 h pre-treatment with MSDM prior to IRBP immunization resulted in significant inhibition of the disease. Furthermore, MSDM administration for 2 1 days completely reduced the incidence and severity of EAU. To investigate whether MSDM could modulate cytokine switching from Th 1 to Th2, culture supernatants of MBP- or IRBP-stimulated inguinal lymphocytes were analyzed. MSDM treatment enhanced IL-10 secretion but decreased IFN-${\gamma}$. IL-4 was undetectable in all groups. In contrast, the MBP-or IRBP-immunized rats without MSDM secreted high concentrations of IFN-${\gamma}$, but low concentrations of IL-10. Conclusion: In conclusion, NO administation suppresses EAE and EAU by modulating the Th1/Th2 balance during inflammatory immune responses. This work further suggests that NO may be useful in the therapeutic control of autoimmune disease.

  • PDF

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

Entinostat, a histone deacetylase inhibitor, increases the population of IL-10+ regulatory B cells to suppress contact hypersensitivity

  • Min, Keun Young;Lee, Min Bum;Hong, Seong Hwi;Lee, Dajeong;Jo, Min Geun;Lee, Ji Eon;Choi, Min Yeong;You, Jueng Soo;Kim, Young Mi;Park, Yeong Min;Kim, Hyuk Soon;Choi, Wahn Soo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.534-539
    • /
    • 2021
  • IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells.

Immunotherapeutic Effects of CTLA4Ig Fusion Protein on Murine EAE and GVHD (마우스 EAE, GVHD 질환에서 CTLA4Ig 융합단백의 면역치료 효과)

  • Jang, Seong-Ok;Hong, Soo-Jong;Cho, Hoon-Sik;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.302-309
    • /
    • 2003
  • Background: CTLA4 (CD152), which is expressed on the surface of T cells following activation, has a much higher affinity for B7 molecules comparing to CD28, and is a negative regulator of T cell activation. In contrast to stimulating and agonistic capabilities of monoclonal antibodies specific to CTLA-4, CTLA4Ig fusion protein appears to act as CD28 antagonist and inhibits in vitro and in vivo T cell priming in variety of immunological conditions. We've set out to confirm whether inhibition of the CD28-B7 costimulatory response using a soluble form of human CTLA4Ig fusion protein would lead to persistent inhibition of alloreactive T cell activation. Methods: We have used CHO-$dhfr^-$ cell-line to produce CTLA4Ig fusion protein. After serum free culture of transfected cell line we purified this recombinant molecule by using protein A column. To confirm characterization of fusion protein, we carried out a series of Western blot, SDS-PAGE and silver staining analyses. We have also investigated the efficacy of CTLA4Ig in vitro such as mixed lymphocyte reaction (MLR) & cytotoxic T lymphocyte (CTL) response and in vivo such as experimental autoimmune encephalomyelitis (EAE), graft versus host disease (GVHD) and skin-graft whether this fusion protein could inhibit alloreactive T cell activation and lead to immunosuppression of activated T cell. Results: In vitro assay, CTLA4Ig fusion protein inhibited immune response in T cell-specific manner: 1) Human CTLA4Ig inhibited allogeneic stimulation in murine MLR; 2) CTLA4Ig prevented the specific killing activity of CTL. In vivo assay, human CTLA4Ig revealed the capacities to induce alloantigen-specific hyporesponsiveness in mouse model: 1) GVHD was efficiently blocked by dose-dependent manner; 2) Clinical score of EAE was significantly decreased compared to nomal control; 3) The time of skin-graft rejection was not different between CTLA4Ig treated and control group. Conclusion: Human CTLA4Ig suppress the T cell-mediated immune response and efficiently inhibit the EAE, GVHD in mouse model. The mechanism of T cell suppression by human CTLA4Ig fusion protein may be originated from the suppression of activity of cytotoxic T cell. Human CTLA4Ig could not suppress the rejection in mouse skin-graft, this finding suggests that other mechanism except the suppression of cytotoxic T cell may exist on the suppression of graft rejection.