• Title/Summary/Keyword: Experimental Analysis

Search Result 23,604, Processing Time 0.051 seconds

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF

Effect of Ginseng on Visceral Nucleic Acid Content of Rats (고려인삼이 흰쥐의 장기조직 핵산 함유량에 미치는 영향)

  • Kim, Chul;Choi, Hyun;Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk;Huh, Man-Kyung
    • The Korean Journal of Physiology
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 1971
  • I. Chemical analysis A study was planned to see if administration of ginseng extract has any influence upon the adrenal, the hepatic, the splenic, and the pancreatic nucleic acid contents of rats, and to estimate the effect of ACTH administration as a substitute for stress reaction upon these nucleic acid contents of rats previously primed with ginseng. Ninety male rats$(body\;weight:\;150{\sim}200gm)$ were divided into the ginseng, the saline, and the normal control groups, which received for 5 days 0.5ml/100 gm body weight of ginseng extract solution (4 mg of ginseng alcohol extract in 1 ml of saline), same amount of saline, or no medication, respectively. On the 5th experimental day, each of the 3 groups was further divided into 2 subgroups yielding the ginseng, the ginseng-ACTIT, the saline, the saline-ACTH, the normal control, and the normal-ACTH subgroups. The ginseng, the saline, and the normal control subgroups were sacrificed 3 hours after the last medication, while the ginseng-ACTH, the saline·ACTH, and the normal-ACTH subgroups received ACTH(0.1 unit/subject) 1 hour after the last medication and were sacrificed after 1 more hour. The adrenal gland, the liver, the spleen and the pancreas of each rat were measured for RNA and DNA contents using the chemical method of Schmidt-Thannhauser-Schneider. Following results were obtained: 1. Adrenal RNA and DNA contents and RNA/DNA ratio were all significantly higher in the ginseng group compared with the values obtained from the normal control and the saline groups. Generally administration of ACTH reduced nucleic acid contents of the viscera examined. However, in the ginseng group the rate of decrease [(value of ginseng-ACTH subgroup-value of ginseng subgroup) x100/value of ginseng subgroup)] in adrenal RNA and DNA contents and in RNA/DNA ratio were more conspicuous than they were in the normal control and the saline groups. 2. Hepatic RNA and DNA contents and RNA/DNA ratio were all significantly less in the ginseng group than in the normal control and the saline groups. After ACTH, the rate of decrease in hepatic RNA, DNA, and RNA/DNA ratio of the ginseng· group was less conspicuous than those of the other 2 groups. 3. With regard to the splenic nucleic acid contents, the RNA and the RNA/DNA values of the ginseng group were higher than those of the normal control group but lower than those of the saline group, while the DNA value of the ginseng group was lower than that of the normal control group but higher than that of the saline group. Following administration of ACTH, the rate of decrease in RNA and DNA contents and in RNA/DNA ratio of the ginseng group was more conspicuous than that of the normal control group but less remarkable than that of the saline group. 4. Pancreatic RNA and DNA contents were notably lower in the ginseng group than in the normal control and the saline groups. However, the RNA/DNA ratio of the ginseng group was higher than that of the normal control and the saline groups.'After ACTH, the rate of decrease in pancreatic RNA and RNA/DNA ratio of the ginseng group was less than that of the normal. control group but more than that of the saline group, while the DNA content was actually increased in the ginseng group though it decreased in the normal control and the saline groups. Although the results are not clear enough for an accurate interpretation, they seem to indicate that ginseng exerts notable influence upon the RNA and DNA contents and the RNA/DNA ratio of the viscera stodied. On the whole the drug tends to increase the RNA and DNA contents and RNA/DNA ratio of the adrenal gland but seems to diminish the values of the other 3 viscera. In the early period following ACTH, ginseng facilitates the fall in RNA and DNA contents and RNA/DNA ratio of the adrenal gland, while it tends to reduce the fall in the values of the other viscera studied. II. Autoradiographic and histochemical analysis It was planned autoradiographically and histochemically to affirm and extend the results obtained in part I with regard to the chemically assessed change in the adrenal, the pancreatic, the hepatic and the splenic DNA and RNA contents under the influence of ginseng and ACTH. Fourty male mice (body weight: $18{\sim}20gm$) and 20 male rats were used. Each animal species was divided into the saline, the ginseng, the saline-ACTH, and the ginseng-ACTH groups according to the administered drugs. In the mice, the adrenal, the pancreatic, the splenic and the hepatic DNA-synthetic activity was assessed autoradiographically after administration of $^3H$-thymidine. In the rats, the RNA content of the above 4 organs was assessed histochemically after staining them with methylgreen pyronine. Following results were obtained: 1. Labeled cells were significantly more numerous in the adrenal cortex, the spleen and the liver of the ginseng group than in those of the saline group, although they were less numerous in the pancreas of the ginseng group than in the pancreas of the saline group. The adrenocortical, the pancreatic, the splenic and the hepatic tissues were stained with methylgreen pyronine more deeply in the ginseng group than in the saline group. 2. The adrenocortical, the pancreatic, the splenic and the hepatic tissues contained labeled cells less numerously in the saline-ACTH and the ginseng-ACTH group than in the saline and the ginseng groups. All these tissues were also stained with methylgreen pyronine less deeply in the saline-ACTH and the ginseng-ACTH groups than in the saline and the ginseng groups. 3. However, the adrenal cortex, the spleen, the pancreas, and the liver contained labeled cells more numerously in the ginseng-ACTH group than in the saline-ACTH group. the 4 tissues were stained with methylgreen pyronine more deeply in the ginseng-ACTH group than in the saline-ACTH group. It is inferred from the above results that though with exception, the ginseng mostly facilitates cellular synthesis of nucleic acids and mitigates reduction in nucleic acid content of tissues after administration of ACTH.

  • PDF

A Study on the Forest Yield Regulation by Systems Analysis (시스템분석(分析)에 의(依)한 삼림수확조절(森林收穫調節)에 관(關)한 연구(硏究))

  • Cho, Eung-hyouk
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.344-390
    • /
    • 1977
  • The purpose of this paper was to schedule optimum cutting strategy which could maximize the total yield under certain restrictions on periodic timber removals and harvest areas from an industrial forest, based on a linear programming technique. Sensitivity of the regulation model to variations in restrictions has also been analyzed to get information on the changes of total yield in the planning period. The regulation procedure has been made on the experimental forest of the Agricultural College of Seoul National University. The forest is composed of 219 cutting units, and characterized by younger age group which is very common in Korea. The planning period is devided into 10 cutting periods of five years each, and cutting is permissible only on the stands of age groups 5-9. It is also assumed in the study that the subsequent forests are established immediately after cutting existing forests, non-stocked forest lands are planted in first cutting period, and established forests are fully stocked until next harvest. All feasible cutting regimes have been defined to each unit depending on their age groups. Total yield (Vi, k) of each regime expected in the planning period has been projected using stand yield tables and forest inventory data, and the regime which gives highest Vi, k has been selected as a optimum cutting regime. After calculating periodic yields and cutting areas, and total yield from the optimum regimes selected without any restrictions, the upper and lower limits of periodic yields(Vj-max, Vj-min) and those of periodic cutting areas (Aj-max, Aj-min) have been decided. The optimum regimes under such restrictions have been selected by linear programming. The results of the study may be summarized as follows:- 1. The fluctuations of periodic harvest yields and areas under cutting regimes selected without restrictions were very great, because of irregular composition of age classes and growing stocks of existing stands. About 68.8 percent of total yield is expected in period 10, while none of yield in periods 6 and 7. 2. After inspection of the above solution, restricted optimum cutting regimes were obtained under the restrictions of Amin=150 ha, Amax=400ha, $Vmin=5,000m^3$ and $Vmax=50,000m^3$, using LP regulation model. As a result, about $50,000m^3$ of stable harvest yield per period and a relatively balanced age group distribution is expected from period 5. In this case, the loss in total yield was about 29 percent of that of unrestricted regimes. 3. Thinning schedule could be easily treated by the model presented in the study, and the thinnings made it possible to select optimum regimes which might be effective for smoothing the wood flows, not to speak of increasing total yield in the planning period. 4. It was known that the stronger the restrictions becomes in the optimum solution the earlier the period comes in which balanced harvest yields and age group distribution can be formed. There was also a tendency in this particular case that the periodic yields were strongly affected by constraints, and the fluctuations of harvest areas depended upon the amount of periodic yields. 5. Because the total yield was decreased at the increasing rate with imposing stronger restrictions, the Joss would be very great where strict sustained yield and normal age group distribution are required in the earlier periods. 6. Total yield under the same restrictions in a period was increased by lowering the felling age and extending the range of cutting age groups. Therefore, it seemed to be advantageous for producing maximum timber yield to adopt wider range of cutting age groups with the lower limit at which the smallest utilization size of timber could be produced. 7. The LP regulation model presented in the study seemed to be useful in the Korean situation from the following point of view: (1) The model can provide forest managers with the solution of where, when, and how much to cut in order to best fulfill the owners objective. (2) Planning is visualized as a continuous process where new strateges are automatically evolved as changes in the forest environment are recognized. (3) The cost (measured as decrease in total yield) of imposing restrictions can be easily evaluated. (4) Thinning schedule can be treated without difficulty. (5) The model can be applied to irregular forests. (6) Traditional regulation methods can be rainforced by the model.

  • PDF