• 제목/요약/키워드: Expansive Admixture

검색결과 57건 처리시간 0.025초

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • 한국건축시공학회지
    • /
    • 제10권4호
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가 (Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture)

  • 최세진;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2014
  • 콘크리트의 취성파괴를 방지하기 위해 강섬유 보강재는 효과적인 복합재료이다. 그러나 시멘트 사용량이 많아지면 건조수축이 증가하고 이로 인해, 강섬유 보강재의 연성증가 효과가 제한될 수 있다. 팽창재를 사용한 콘크리트 내부의 강섬유 보강재는 화학적 프리스트레싱 효과가 발생하여 강섬유 보강효과를 증가시킬 수 있다. 본 연구에서는 CSA 팽창재와 강섬유 보강재를 혼입하여 콘크리트의 역학적인 특성을 분석하였다. 체적비 1~2%의 강섬유 보강재와 시멘트 중량의 10%의 CSA 팽창재를 혼입하였으며, 다양한 역학적 특성과 휨거동을 분석하였다. 강섬유 보강재를 혼입한 CSA 콘크리트는 인장강도와 초기균열강도의 증가를 나타냈으며, 균열후의 파괴에너지 증가와 같은 연성거동을 뚜렷하게 나타내었다. 적절한 팽창재 사용과 최적의 강섬유 보강재의 혼입률이 도출된다면 이들의 상호작용은 콘크리트의 취성을 더욱 효과적으로 제어할 수 있다.

A Study of the Compaction Effect of Expansive Admixture for the Development of an Expansive Compaction Packer

  • Kim, Jin-Chun;Park, Ki-Yeon;Lee, Dong-Ik;Lee, Gyu-Sang;Kim, Sang-Gyun;Yoo, Byung-Sun;Choi, Gi-Sung
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.179-188
    • /
    • 2015
  • Although permeating injection is ideal for grouting reservoir embankments, it is usually combined with fracturing injection for grouting, which can disturb the original soil. Compaction with low expansive pressure followed by grout injection can overcome this problem. An expansive compaction (EC) packer was developed in this work to easily apply sequential injection and compaction at a work site. Furthermore, to achieve compaction around the grouting hole, a mixture of expansive admixtures and grout was injected with the EC packer to trigger an increase in volume of the grout material. This work verifies the compaction effect of the EC packer and the expansive admixture. It reports the concepts of the EC packer, the range of expansive compaction, the effectiveness of injection, and the results of indoor tests performed to verify the effectiveness of the expansive admixtures. The indoor testing comprised a preparatory test and the main test. The preparatory test assessed the admixtures for their compaction effects, while the main test measured and analyzed the admixtures' expansive force, pressure, and compaction effect with a mold to verify the effectiveness of the compaction effect.

팽창성 혼화재를 사용한 콘크리트의 길이변화 특성 (The Study on the Length Change of Concrete Used Expansive Admixture)

  • 민정기;김영익;서대석;김인수;성찬용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.289-293
    • /
    • 1999
  • This research was performed to evaluate the longitudinal length change ratio of concrete used the expansive admixture. As the results of this study, the compressive strength was shown the highest value at the used 10% expansive admixture both of the dry and wet curing condition. And the length change ration was shown higher 0.0316% and 0.0529 % than that of control in wet and dry curing condition. But this value was not enough to recover the shrinkage occuring by dry shrinkage. According to this study , we have obtained 10% on normal portland cement concrete as the optimum replacement ration of expansive admixture.

  • PDF

팽창성 혼화재를 사용한 고강도콘크리트의 기초물성 및 동결융해저항특성 (Strength Property and Freeze-Thaw Resistance of High Strength Concrete using Expansive Admixture)

  • 문한영;김병권;하주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.117-120
    • /
    • 2004
  • Up to now, many researches have been performed md verified that many properties of concrete can be improved by using mineral admixtures such as blast furnace slag, silica fume, and expansive admixture. But it is not clear whether there is any need for entraining air to make a high strength concrete using expansive admixture and mineral admixtures to insure enough freeze-thaw resistance. this paper presents the strength and durability properties of high strength concrete using expasive admixtures and industrial by-products. It was observed from the test results that very high strength concrete$(W/B=20\%)$ is not needed to be air entrained and high strength concrete$(W/B=30\%)$ using expansive admixture and mineral admixtures is needed to be entrained $2\~4\%$ air.

  • PDF

A Study on the Creep and Autogenous Shrinkage of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixtures at Early Age

  • Park, Sun-Gyu;Noguchi, Takafumi;Kim, Moo-Han
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.73-77
    • /
    • 2006
  • This paper shows a study of the efficiency of expansive additive and shrinkage reducing admixture in controlling restrained shrinkage cracking of high performance concrete at early age. Free autogenous shrinkage test of $100{\times}100{\times}400mm$ concrete specimens and simulated completely-restrained test with VRTM(variable restraint testing machine) were performed. Creep and autogenous shrinkage of high-performance concrete with and without expansive additive and shrinkage reducing admixture were investigated by experiments that provided data on free autogenous shrinkage and restrained shrinkage. The results showed that the addition of expansive additive and shrinkage reducing admixture effectively reduced autogenous shrinkage and tensile stress in the restrained conditions. Also, it was found that the shrinkage stress was relaxed by 90% in high-performance concrete with and without expansive additive and shrinkage reducing admixtures at early age.

팽창재 치환율에 따른 섬유보강 시멘트 복합체의 역학적 특성 (Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC))

  • 이영오;윤현도
    • 콘크리트학회논문집
    • /
    • 제22권5호
    • /
    • pp.617-624
    • /
    • 2010
  • SHCC(strain hardening cement composite)의 구성요소 중 섬유는 상당히 중요하며 가교작용에 의해 시멘트 복합체의 파괴양상을 조절 할 수 있고, 섬유의 인장강도, 탄성계수, 형상비와 같은 섬유의 특성은 SHCC 구조물에서의 파괴 거동에 큰 영향을 미치게 된다. 콘크리트의 경우 수축에 따른 균열과 인장강도가 작게 나타나는 대표적인 단점을 가지고 있다. 또한 구조물에서 수축에 따른 균열은 피할 수 없게 되는 간과해서는 안되는 요소로, 팽창재를 사용함에 따라 초기수축균열을 줄여줄 수 있다. 따라서 이 논문에서는 팽창재를 사용한 SHCC의 변형 및 거동에 따른 성능을 평가하기 위하여 수축, 압축, 휨 및 인장 실험을 계획하였으며, 물바인더비 30%, 팽창재 대체량은 8~14%, 섬유의 혼입량은 1.5%를 사용하여 실험체를 계획 하였다. 또한 팽창재와 섬유 사용에 따른 영향을 평가하기 위하여 팽창재를 0, 10% 치환한 Mor 실험체를 계획 하였다. 팽창재를 사용함에 따라 발생한 SHCC의 팽창은 섬유에 의해 억제 되었으며, 팽창재를 사용함에 따라 전반적으로 성능이 향상되었으며, 팽창재를 10% 혼입한 실험체의 경우 가장 적절한 팽창량을 나타내는 것으로 판단된다.

건조수축 저감형 유동화제의 개발에 관한 연구 (A Study on the Development of Drying Shrinkage-Reducing Superplasticizer)

  • 신재경;오치현;최진만;이성연;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.501-504
    • /
    • 2005
  • This paper discusses the development of drying shrinkage reducing type superplasticizer(DSRS) by varying dosage of polycarboxylic based superplasticizer, liquid type expansive admixture and antifoaming agent. Adequate mixture proportion of each admixture is fixed at 0.3$\%$ of superplasticizer, 0.15$\%$ of liquidtype expansive admixture and 0.0005$\%$ of antifoaming agent to insure the improvement in drying shrinkage as well as comparable to the slump and air content of conventional concrete. With this mixture proportion, compressive strength of concrete using DSRS is comparable to that of conventional concrete. The use of DSRS studied by the authors has a favorable effect on reducing drying shrinkage due to the effect of water content and expansion by expansive admixture.

  • PDF

공동주택 바닥용 시멘트 모르타르의 복합강화법 변화에 따른 열전도 특성 (Properties of Thermal Conductivity of Cement Mortar for Apartment Housing Floor Using Combined Strengthening Method)

  • 윤길봉;전충근;정성철;윤기원;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.243-248
    • /
    • 2001
  • The objective of this study is to investigate the thermal conductivity of cement mortar for apartment housing floor using expansive admixture, copper fiber, cower lathe, hollowed aluminum plate. According to test results, temperature at point (a) located above heating pipe does not show significant variation with age, and temperature at (b), which is located at the finishing surface above heating pipe, and temperature at (c), which is located at center surface between heating pipe has remarkable change. Temperature distribution sat (b) are in order for, structure containing copper fiber>plain structure>structure containing hollowed aluminum plate>structure containing expansive admixture. Temperature distribution, shows high tendency in order for, structure containing copper fiber>structure containing copper lathe>structure containing hollowed aluminum plate>plain structure>structure containing expansive admixture. (a) estimation of temperature distribution is determined with the variation of temperature between (b) point and (c) point during 60 minutes heating.

  • PDF