• Title/Summary/Keyword: Expansion Factor

Search Result 843, Processing Time 0.027 seconds

Antecedents of Manufacturer's Private Label Program Engagement : A Focus on Strategic Market Management Perspective (제조업체 Private Labels 도입의 선행요인 : 전략적 시장관리 관점을 중심으로)

  • Lim, Chae-Un;Yi, Ho-Taek
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • The $20^{th}$ century was the era of manufacturer brands which built higher brand equity for consumers. Consumers moved from generic products of inconsistent quality produced by local factories in the $19^{th}$ century to branded products from global manufacturers and manufacturer brands reached consumers through distributors and retailers. Retailers were relatively small compared to their largest suppliers. However, sometime in the 1970s, things began to slowly change as retailers started to develop their own national chains and began international expansion, and consolidation of the retail industry from mom-and-pop stores to global players was well under way (Kumar and Steenkamp 2007, p.2) In South Korea, since the middle of the 1990s, the bulking up of retailers that started then has changed the balance of power between manufacturers and retailers. Retailer private labels, generally referred to as own labels, store brands, distributors own private-label, home brand or own label brand have also been performing strongly in every single local market (Bushman 1993; De Wulf et al. 2005). Private labels now account for one out of every five items sold every day in U.S. supermarkets, drug chains, and mass merchandisers (Kumar and Steenkamp 2007), and the market share in Western Europe is even larger (Euromonitor 2007). In the UK, grocery market share of private labels grew from 39% of sales in 2008 to 41% in 2010 (Marian 2010). Planet Retail (2007, p.1) recently concluded that "[PLs] are set for accelerated growth, with the majority of the world's leading grocers increasing their own label penetration." Private labels have gained wide attention both in the academic literature and popular business press and there is a glowing academic research to the perspective of manufacturers and retailers. Empirical research on private labels has mainly studies the factors explaining private labels market shares across product categories and/or retail chains (Dahr and Hoch 1997; Hoch and Banerji, 1993), factors influencing the private labels proneness of consumers (Baltas and Doyle 1998; Burton et al. 1998; Richardson et al. 1996) and factors how to react brand manufacturers towards PLs (Dunne and Narasimhan 1999; Hoch 1996; Quelch and Harding 1996; Verhoef et al. 2000). Nevertheless, empirical research on factors influencing the production in terms of a manufacturer-retailer is rather anecdotal than theory-based. The objective of this paper is to bridge the gap in these two types of research and explore the factors which influence on manufacturer's private label production based on two competing theories: S-C-P (Structure - Conduct - Performance) paradigm and resource-based theory. In order to do so, the authors used in-depth interview with marketing managers, reviewed retail press and research and presents the conceptual framework that integrates the major determinants of private labels production. From a manufacturer's perspective, supplying private labels often starts on a strategic basis. When a manufacturer engages in private labels, the manufacturer does not have to spend on advertising, retailer promotions or maintain a dedicated sales force. Moreover, if a manufacturer has weak marketing capabilities, the manufacturer can make use of retailer's marketing capability to produce private labels and lessen its marketing cost and increases its profit margin. Figure 1. is the theoretical framework based on a strategic market management perspective, integrated concept of both S-C-P paradigm and resource-based theory. The model includes one mediate variable, marketing capabilities, and the other moderate variable, competitive intensity. Manufacturer's national brand reputation, firm's marketing investment, and product portfolio, which are hypothesized to positively affected manufacturer's marketing capabilities. Then, marketing capabilities has negatively effected on private label production. Moderating effects of competitive intensity are hypothesized on the relationship between marketing capabilities and private label production. To verify the proposed research model and hypotheses, data were collected from 192 manufacturers (212 responses) who are producing private labels in South Korea. Cronbach's alpha test, explanatory / comfirmatory factor analysis, and correlation analysis were employed to validate hypotheses. The following results were drawing using structural equation modeling and all hypotheses are supported. Findings indicate that manufacturer's private label production is strongly related to its marketing capabilities. Consumer marketing capabilities, in turn, is directly connected with the 3 strategic factors (e.g., marketing investment, manufacturer's national brand reputation, and product portfolio). It is moderated by competitive intensity between marketing capabilities and private label production. In conclusion, this research may be the first study to investigate the reasons manufacturers engage in private labels based on two competing theoretic views, S-C-P paradigm and resource-based theory. The private label phenomenon has received growing attention by marketing scholars. In many industries, private labels represent formidable competition to manufacturer brands and manufacturers have a dilemma with selling to as well as competing with their retailers. The current study suggests key factors when manufacturers consider engaging in private label production.

  • PDF

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.